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CHAPTER 1

Reading the CPython
Source Code

What Is CPython?

If this is your first time hearing the name “CPython,” you might think it’s a new
implementation of Python. But no, CPython isn’t a new toy or a new programming
language—it’s the very same Python interpreter that most people use every day. What
some may not know is that Python was originally developed in the C programming
language, so when people mention “Python” without any further clarification, they are
typically referring to CPython.

Why Read the Source Code?

Why? For no particular reason—just for fun. And having fun is important!

If your goal in reading this book is to dramatically improve your Python
programming skills by exploring the CPython source code, you might be a little
disappointed. While reading the CPython source can enhance your understanding
of Python to some degree, the primary benefit is the opportunity to improve your C
programming skills, since most of the CPython code base is written in C.

Therefore, if you simply want to learn Python syntax, an introductory Python book
would be a better choice. The main purpose of delving into the CPython source code is
to uncover some of the “black magic” behind the language. For example, what exactly
are “objects” in Python? How are modules loaded? How does Python manage memory?
These are the kinds of topics this book will focus on.

© Chien-Lung Kao 2025
C. Kao, CPython, https://doi.org/10.1007/979-8-8688-1769-4_1
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Where to Begin?
Obtaining the Source Code

Although the entire CPython project is available to browse directly on GitHub, it's more
efficient to download the CPython source code onto your local computer for in-depth
exploration. The next chapter will guide you through where and how to download it.

While the latest version of Python is currently 3.13, this book references the CPython
source code for version 3.12.6. Source code can vary between different versions,
especially for changes beyond minor releases. If you want to follow along exactly, it’s
recommended to use the same version as I do to ensure that we're viewing the same
content.

Additionally, because the CPython source code can be quite complex at times, I may
occasionally omit sections for clarity. For example, the original code might look like this:

// file: Include/object.h

struct object {
_PyObject HEAD EXTRA

#if (defined(__GNUC_ ) Il defined(__clang )) \
88 !(defined _ STDC VERSION &3 _ STDC VERSION  >= 201112L)
// On €99 and older, anonymous union is a GCC and clang extension
__extension
#endif
#ifdef MSC VER
// Ignore MSC warning C4201: "nonstandard extension used:
// nameless struct/union”
__pragma(warning(push))
__pragma(warning(disable: 4201))
#endif
union {
Py ssize t ob refcnt;
#if SIZEOF VOID P > 4
PY UINT32 T ob_refcnt split[2];
#endif
};
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#ifdef MSC VER

__pragma(warning(pop))
#endif

PyTypeObject *ob_type;
}s

There are several #ifdef conditional compilation directives, some related to the
operating system, others to debugging information. Most of the time, these may not be
directly relevant to the core topic at hand, so for the sake of focus, I might simplify the
code like this:

// file: Include/object.h

struct object {
_PyObject HEAD EXTRA

union {
Py ssize t ob_refcnt;

};

PyTypeObject *ob type;
};

To be clear, it’s not that the omitted portions are unimportant, but removing them
helps us concentrate on the essentials.

Development Tools

There are many tools you can use to read source code, such as Vim, Visual Studio Code
(hereafter referred to as VS Code), or even full-featured IDEs like Visual Studio. These
editors provide helpful features for source code navigation, such as jumping quickly
to definitions of functions, macros, constants, or searching for keywords—all of which
make source code exploration more efficient.

In this book, I will use VS Code for source code exploration. If you haven'’t installed it
yet, you can download it from the official VS Code website.


https://code.visualstudio.com/
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Besides VS Code, I have also started using a new editor called Zed , which is
developed in Rust. While it doesn’t have as many plugins as VS Code, its performance is
significantly better, especially for larger files or projects with numerous lines of code—
this difference is noticeable. I highly recommend trying it out.

e VS Code: https://code.visualstudio.com/
o Zed:https://zed.dev/

Can | Understand This Without Knowing C?

Here’s the bottom line: Even if you don't grasp everything 100%, it’s perfectly fine.
Skimming through the code can still be a valuable learning experience.

Learning is not always linear; you don’t need to understand every single line to gain
insights. Sometimes, just examining code structure, function calls, or variable names
can be informative. It’s like piecing together a puzzle—you don’t have to complete every
piece to get a sense of the overall picture.

To be honest, I'm not a C expert either. Fortunately, we live in an age of advanced Al
tools such as ChatGPT that can help explain what’s going on when things get confusing.
As I go through the source code, I'm learning C along the way too. Even if it feels like “the
blind leading the blind,” you’ll eventually get a sense of the bigger picture.

Also, not every part of the CPython project is written in C—some modules are written
in Python. If you're already comfortable with Python, you might want to start by looking
at those modules, which tend to be more approachable. However, if you're a complete
beginner and have never written any kind of code before, you might find it challenging to
keep up. For this reason, I assume readers have some basic programming knowledge—
it doesn’t have to be Python; any language will do—as long as you’re familiar with
concepts like variables, functions, loops, and control flow.

Ready to get started? In the next chapter, we’ll take a look at the CPython project
structure and walk through compiling the source code on your own machine, so you can
build your very own version of Python!


https://zed.dev/
https://code.visualstudio.com/
https://zed.dev/

CHAPTER 2

Overview of the CPython
Project Structure

In this chapter, we’ll take a look at the overall structure of the CPython project and

try building the project ourselves. We'll even make some small modifications to the
CPython source code to get a taste of what it’s like to be a Python Core Developer (just
for fun, of course)!

Project Structure

First, let’s grab a copy of the project from GitHub:
$ git clone git@github.com:python/cpython.git -b v3.12.6 --depth=1

In this book, I am using version 3.12.6 of CPython. If you're using a different
version, some source code details might vary. Excluding some less important files, the
directory structure of the freshly cloned CPython project from GitHub looks like this:

CPython

|— Doc
— Grammar
— Include
— Lib
— Mac
— misc
— Modules
— Objects
— PcC

— PCbuild

© Chien-Lung Kao 2025
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https://doi.org/10.1007/979-8-8688-1769-4_2#DOI

CHAPTER 2  OVERVIEW OF THE CPYTHON PROJECT STRUCTURE

— Parser
|— Programs
— Python

L— Tools

Here’s a brief introduction to what each directory contains:

e Doc: As the name suggests, this directory contains all the
documentation, written in reStructuredText (.rst) format. It’s
actually pretty good bedtime reading if you're struggling to
fall asleep!

e Grammar: Files for defining how Python’s grammar and parser

rules work.

o Include: Clanguage header files used throughout the project. If
you plan to write extensions for CPython, you'll probably need files

from here.

e Lib: The standard library—this directory contains modules written in
Python. If you're familiar with Python, you'll find this folder relatively
approachable.

e Modules: Similar to the Lib directory, but the modules here are
written in C.

e Mac: Tools and files specific to macOS.

e Misc: A collection of miscellaneous files. I personally use such folders
to store files that I can’t categorize elsewhere.

o Objects: The source code for all Python built-in object types, such
as str or list. You'll see files from this directory quite often in
this book.

e PCbuild: Files for building Python on Windows, especially with
Visual Studio. There are project files you can open directly.

e PC:Similar to PCbuild, but targeted at older Windows versions. Most
files are obsolete, but some are retained for compatibility.

o Parser: Code for converting . py files into tokens that Python can
understand. This part is a bit more advanced.
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o Programs: Contains source code related to CPython executables.

e Python: Contains the interpreter source code itself. This is a more
advanced area, but if you're interested in how the interpreter works,
it’s worth checking out.

e Tools: Utilities for Python development and maintenance.

For the purposes of this book, you'll most often see the Include, Lib, Modules,
Objects, and Python directories. These are the core source files of the CPython
interpreter, and if you want to understand the inner workings of Python, you'll spend
most of your time here.

Building the Project

After downloading the project, switch into the project directory and run the . /configure
command:

$ cd cpython
$ ./configure

The . /configure command will print out a lot of information that might look
intimidating at first. What it’s really doing is checking your system environment and
dependencies to make sure nothing important is missing. Once everything checks out, a
Makefile will be generated. This file describes how the make command should go about
compiling the whole project.

If you add the --prefix parameter to . /configure, like so:

$ ./configure --prefix=/tmp/my-python

With the --prefix option, when you run make install later, the compiled Python
(and related files) will be installed under /tmp/my-python. However, I'm not planning to
run make install justyet, so you can leave off the --prefix for now. We'll revisit it if we
need to run other tools (like pip) later.

Next, run the make command. This command will compile the whole project
according to the rules defined in the generated Makefile:

$ make
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The compilation process may take a while. If it finishes without any errors, you
should find a new executable named python.exe in the root directory—even on macOS,
the filename is python.exe. I know it might seem odd to see .exe on macOS, but it’s
intentional: since there’s already a Python/ directory in the CPython project, using
python.exe helps avoid a naming conflict.

If you want to “install” the Python version you just built, you can run:

$ make install

If you passed a --prefix argument to . /configure earlier, the make install
command will install Python to that location. But even if you skip installation, you can
still directly run the newly built python. exe. Try running it to launch the familiar REPL

environment:

$ ./python.exe

Python 3.12.6+ (heads/3.12:b2a7d718e3b, Sep 15 2024, 23:31:57) [Clang

15.0.0 (clang-1500.3.9.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import sys

>>> sys.version

'3.12.6+ (heads/3.12:b2a7d718e3b, Sep 15 2024, 23:31:57) [Clang 15.0.0
(clang-1500.3.9.4)]"

A + after the version number indicates that this is not an official release, but rather a
“development” or custom-compiled version.

Greet CPython!

Now, let’s make a small change to the CPython source code to create a custom effect. For
example, I'd like to print a “Hello” message upon entering the REPL and a “Bye” message
when exiting, just to make things a bit friendlier! To achieve this, I need to locate the
code responsible for entering the REPL. This is in Python/pythonrun.c, and by looking
up the PyRun_InteractiveloopObject() function, you'll find a do...while... loop—
the very loop that implements the “Read-Eval-Print Loop” (REPL):
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// file: Python/pythonrun.c
int
_PyRun_InteractiveloopObject(FILE *fp, PyObject *filename,
PyCompilerFlags *flags)
{

PyCompilerFlags local flags = PyCompilerFlags INIT;

// ... omitted ...

do {
ret = PyRun_InteractiveOneObjectEx(fp, filename, flags);
// ... omitted ...

} while (ret != E _EOF);

return err;

This segment is fairly straightforward—the main logic lives within the do. ..
while... loop. If  want to greet the user before the REPL loop starts, I can simply
call printf() right before do. To look a bit more “programmatic,” I'll define a say
something() function in this file, which simply prints the passed-in string:

// file: Python/pythonrun.c

void
say_something(const char *message)

{
e C——
printf("%s\n", message);
printf("==============\n"),
}

Because we'll call say_something() inside PyRun_InteractiveloopObject(), the
function definition must appear before its first use. Now, let’s call it:

// file: Python/pythonrun.c

int

_PyRun_InteractivelLoopObject(FILE *fp, PyObject *filename,
PyCompilerFlags *flags)
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{
PyCompilerFlags local flags = PyCompilerFlags INIT;
// ... omitted ...
say_something("Hello CPython"); // added this line
do {
ret = PyRun_InteractiveOneObjectEx(fp, filename, flags);
// ... omitted ...
} while (ret != E _EOF);
say_something("Bye"); // added this line
return err;
}

This way, “Hello CPython” will print when you enter the REPL, and “Bye” will print
upon exit. Unlike Python or JavaScript, where changes take effect immediately, with C,
you need to recompile the code first. So re-run make to rebuild CPython. This time, only
the changed files are rebuilt, so it should finish faster than before.

Run the following to see the effect:

$ ./python.exe

Python 3.12.6+ (heads/3.12-dirty:b2a7d718e3b, Sep 16 2024, 14:46:05) [Clang
15.0.0 (clang-1500.3.9.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

> 1+ 2

3

>>> print("Hey you!")
Hey youl!

10
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As soon as you enter the REPL, you'll see “Hello CPython” When you exit (by
pressing Ctrl+D), “Bye” is printed as well. Success!

However, there is a minor issue. In Python 3.12, you can exit the REPL not only
with Ctrl+D but also by typing exit (). Currently, exit() does not print “Bye’, since the
original do. . .while... loop condition only checks for ret != E_EOF. We'll tackle this
shortly, but first, let’s improve the say something() function a bit. I want to make it
reusable in other parts of the code base, so I'll reorganize it into a separate module. This
will also demonstrate how to structure modules in C!

A (Very) Basic Module

To define a module in C, you typically declare function prototypes in a . h header file,
then implement the functionality in a corresponding . c source file. This is common
practice in C. Following the conventions in the CPython project, such header files are
usually placed in the Include directory and source files in Modules, Python, or Objects.
Extension modules (C Extensions) are typically in Modules, while core features are
found in Python or Objects. Since our say_something() function modifies interpreter
behavior, placing it in the Python directory makes sense.

Let’s start by creating a greeting.h file in the Include directory. The filename can be
something else if you prefer. The contents are as follows:

// file: Include/greeting.h

#ifndef PY GREETING H
#define PY GREETING H

extern void say something(const char *message);
#endif

The #ifndef and #define lines implement a header guard, which prevents this file
from being included more than once and causing compilation errors. PY_GREETING His
just an arbitrary name; the key is that it doesn’t clash with any others. Next, in the Python
directory, create a greeting.c file:

// file: Python/greeting.c

#include <stdio.h>
#include "greeting.h"

11
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void say something(const char *message)

{
prlnt-F("=============\n"),
printf("%s\n", message); // Print the incoming message
prlntf(":::::::::::::\n");

}

This is functionally identical to before, but now we include "greeting.h" so the
compiler knows about say_something().

Now we need to tell CPython to compile these files so that say_something() is
available. In the CPython project, all files to be compiled are listed in Makefile.pre.
in, which serves as a template for generating the Makefile. Let’s add greeting.c to the
build by finding the PYTHON_OB3JS list and inserting our greeting object file:

# file: Makefile.pre.in

PYTHON 0BJS=  \
Python/ warnings.o \

. omitted ...
Python/suggestions.o \
Python/perf trampoline.o \
Python/greeting.o \
Python/$(DYNLOADFILE) \
$(LIBOBJS) \
$(MACHDEP_0BJS) \
$(DTRACE_O0BJS) \
@PLATFORM_OBJS@

After saving the file, you need to re-run . /configure to regenerate the Makefile.
Once that’s complete, run make again to rebuild CPython. This will compile greeting.c
into greeting.o. Now, anywhere you'd like to use this function, just include greeting.h,
for example:

// file: Python/pythonrun.c

#include "pycore_pylifecycle.h” // Py UnhandledKeyboardInterrupt
#include "pycore_pystate.h" // _PyInterpreterState GET()
#include "pycore_sysmodule.h" // _PySys Audit()
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#include "pycore_traceback.h" // _PyTraceBack Print Indented()
#include "greeting.h"

// ... omitted ...

Aslong as you include greeting.h, you can call your custom say_something()
function wherever you like.

Saying Goodbye on Exit

Back to the REPL: earlier, we mentioned that quitting with exit() doesn’t print “Bye’,
because calling exit() does not trigger the ret != E_EOF condition in the loop. In
Python/pythonrun.c, search for the handle_system exit() function. This is the
function that’s called when exit() is used to leave the REPL. Let’s add a call to say _
something("Bye"); here:

// file: Python/pythonrun.c

static void
handle_system exit(void)

{
int exitcode;
if (_Py HandleSystemExit(&exitcode)) {
say _something("Bye"); // <-- add this line
Py Exit(exitcode);
}
}

Rebuild with make, and it should work as expected:

$ ./python.exe

Python 3.12.6+ (heads/3.12-dirty:b2a7d718e3b, Sep 16 2024, 15:41:49) [Clang
15.0.0 (clang-1500.3.9.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hey")
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Done! How does it feel to make your own modifications to the CPython source code?
When learning Python, you may have heard the saying “everything in Python is
an object.” In the next chapter, let’s start from this idea and take a look at what these
“objects” actually look like under the hood!

14



CHAPTER 3

Everything Is an

Object: Part 1

In most Python courses, articles, or tutorial videos, you often hear the statement
“everything in Python is an object.” Integers, floats, and strings are all objects; lists and

dictionaries obviously look like objects; and even functions and classes are also objects.

Since everything is an object, let’s take a look at what an object actually looks like in

CPython.

What Is an “Object”?

In CPython, objects are represented using the PyObject struct. Let’s see how PyObject is

defined. In the Include/pytypedefs.h file, you'll find:

// file: Include/pytypedefs.h

// ... omitted ...
typedef struct PyGetSetDef PyGetSetDef;
typedef struct PyMemberDef PyMemberDef;

typedef struct object PyObject;

typedef struct longobject PylLongObject;
typedef struct typeobject PyTypeObject;
typedef struct PyCodeObject PyCodeObject;
// ... omitted ...

© Chien-Lung Kao 2025
C. Kao, CPython, https://doi.org/10.1007/979-8-8688-1769-4_3
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As expected, PyObject is indeed a struct. If you look up _object, you'll find its
definition in Include/object.h:

// file: Include/object.h

struct object {
_PyObject HEAD EXTRA

#if (defined(__GNUC_ ) Il defined(__clang )) \
8% !(defined _ STDC VERSION _ && _ STDC_VERSION _ >= 201112L)
// On €99 and older, anonymous union is a GCC and clang extension
__extension__
#endif
#ifdef MSC VER
// Ignore MSC warning C4201: "nonstandard extension used:
// nameless struct/union”
__pragma(warning(push))
__pragma(warning(disable: 4201))
#endif
union {
Py ssize t ob_refcnt;
#if SIZEOF VOID P > 4
PY UINT32_T ob_refcnt_split[2];
#endif
}s
#ifdef MSC VER

__pragma(warning(pop))
#endif

PyTypeObject *ob type;
};

This looks a bit complicated, so let’s remove the conditional compilation directives
like #ifdef to focus on the core structure. What remains is:

// file: Include/object.h

struct object {
_PyObject HEAD EXTRA

16
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union {
Py ssize t ob refcnt;
};
PyTypeObject *ob_type;
}s

The _object struct is quite straightforward—it contains a macro _PyObject HEAD_
EXTRA and two member variables, ob_refcnt and ob_type. Let’s examine each of them
one by one.

The Previous and Next Object

Starting with the macro PyObject HEAD_EXTRA, if you trace its definition, you'll find it in
the same file:

// file: Include/object.h

#ifdef Py TRACE REFS
/* Define pointers to support a doubly-linked list of all live heap
objects. */
#define PyObject HEAD EXTRA \
PyObject * ob next; \
PyObject * ob prev;

#define PyObject EXTRA INIT Py NULL, Py NULL,

#else

# define PyObject HEAD EXTRA
# define PyObject EXTRA INIT
#endif

In C, #define is used to create macros. Macros are neither variables nor functions—
they are code snippets that are replaced during compilation, making the code more
readable and reusable. Notice the comment just above the macro:

Define pointers to support a doubly linked list of all live heap
objects.

17
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This means that the PyObject HEAD EXTRA macro actually defines _ob_next and _
ob_prev pointers, which are used to link all Python objects together into a doubly linked
list. Python objects are stored on the heap, which, unlike the stack, does not necessarily
occupy contiguous memory locations. After allocation, objects may be scattered
throughout the heap. So how does Python know what the previous or next object is?
Python uses a “doubly linked list” data structure to connect all objects. This makes it easy
to find the previous or next object and allows objects to be added or removed efficiently
(0(1)), though searching through the list is slower (0(n)).

From the source code, you can see that the PyObject HEAD EXTRA macro is typically
empty during normal compilation and only includes the ob next and ob prev
pointers when Py TRACE REFS is defined. This feature is usually enabled for debugging
or tracking object reference counts; in the Python versions most of us use, objects do not
form a doubly linked list.

Garbage Collection Mechanism

ob_refcntis avariable of type Py _ssize t, which is essentially a long integer. refcnt
stands for Reference Count (RC), which is how Python handles garbage collection.
When an object is referenced, such as being assigned to a variable or stored in a list
or dictionary, its ob_refcnt increases. Conversely, when the reference is removed,
ob_refcnt decreases. When the value of ob_refcnt drops to 0, it means no one needs
this object anymore, and it can be reclaimed by the Garbage Collector (GC), releasing its
resources back to the system.

Here, ob_refcnt is encapsulated in a union; this is usually done to allow for
extension or modification of struct fields under different compilation conditions. Let’s
trace how ob_refcnt is initialized:

// file: Objects/object.c
PyObject *
_PyObject New(PyTypeObject *tp)
{
PyObject *op = (PyObject *) PyObject Malloc( PyObject SIZE(tp));
if (op == NULL) {
return PyErr NoMemory();
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_PyObject Init(op, tp);
retuxn op;

The purpose of the PyObject New() function is pretty clear—it requests a block of
memory suitable for the given type and then initializes the object. In other words, it’s a
function for creating PyObject objects. Now, let’s follow PyObject Init():

// file: Include/internal/pycore object.h

static inline void
_PyObject Init(PyObject *op, PyTypeObject *typeobj)

{
assert(op != NULL);
Py SET TYPE(op, typeobj);
if (_PyType HasFeature(typeobj, Py TPFLAGS HEAPTYPE)) {
Py INCREF(typeobj);
}
_Py NewReference(op);
}

In the last line of the function, you can see a call to Py NewReference(), which is
the function responsible for setting ob_refcnt. Let’s continue to follow it:

// file: Include/internal/pycore object.h

void
_Py NewReference(PyObject *op)
{

new_reference(op);

Almost there—let’s take a look at the new_reference() function:
// file: Objects/object.c

static inline void
new_reference(PyObject *op)

{

if (_PyRuntime.tracemalloc.config.tracing) {
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_PyTraceMalloc NewReference(op);
}
// Skip the immortal object check in Py SET REFCNT; always set
refent to 1
op->ob_refcnt = 1;

Aha! Here you can see that the ob_refcnt of the passed-in object is set to 1. This
means every newly created object’s ob_refcnt has a default value of 1. Why is this
necessary? Well, without setting it to 1, the object would be considered unused and
scheduled for deletion immediately upon creation.

Since we're here, let’s also quickly look at how ob_refcnt is incremented and
decremented:

// file: Include/object.h

static inline Py ALWAYS INLINE void Py INCREF(PyObject *op)

{
// Explicitly check immortality against the immortal value

if (_Py_IsImmortal(op)) {
return;

}

op->ob_refcnt++;

It’s simply incremented using ++. What about decrementing?
// file: Include/object.h

static inline Py ALWAYS INLINE void Py DECREF(PyObject *op)
{

// Non-limited C API and limited C API for Python 3.9 and older access

// directly PyObject.ob refcnt.
if (_Py IsImmortal(op)) {
return;

}
_Py DECREF_STAT INC();

if (--op->ob _refcnt == 0) {
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_Py Dealloc(op);

Decrementing just uses - - on the op parameter to decrease the count. Here, if
ob_refcnt drops to 0, it triggers a call to Py Dealloc(). If you continue to trace into
_Py Dealloc(), you will observe the object’s life cycle, such as invoking its tp_dealloc
method. Further details about this will be covered when we discuss Type objects.

Did you notice the “immortal” object design in the above code?

Immortal Objects

If you paid attention to the code earlier, you'll notice that when incrementing or
decrementing ob_refcnt, if the object is “immortal,” the operation does nothing—the
ob_refcnt value remains unchanged. Let’s look at how the Py IsImmortal() function

is implemented:
// file: Include/object.h

static inline Py ALWAYS INLINE int Py IsImmortal(PyObject *op)
{
#if SIZEOF VOID P > 4
return Py CAST(PY_INT32 T, op->ob_refcnt) < 0;
#else
return op->ob_refcnt == Py IMMORTAL_REFCNT;
#endif

}

As you can probably deduce, simply assigning a special value to ob_refcnt marks
the object as immortal. What is this special value? On 64-bit systems, it’s a negative
value. On 32-bit systems, since the ob_refcnt range is smaller, Python uses a specific
fixed value Py IMMORTAL_REFCNT instead of a negative number to indicate immortality.

Why have “immortal” objects? In Python, certain objects—such as None, True, and
False—are frequently used and don’t change. They should not and do not need to be
collected. This design prevents repeated creation and destruction of these commonly
used objects.
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PyTypeObject

The last member of PyObject, ob_type, is a pointer to a PyTypeObject. So, what is
PyTypeObject?

// file: Include/pytypedefs.h

typedef struct object PyObject;

typedef struct longobject PylLongObject;
typedef struct typeobject PyTypeObject;
typedef struct PyCodeObject PyCodeObject;
typedef struct frame PyFrameObject;

It turns out that PyTypeObject is just an alias for the typeobject struct. Let’s check

its definition:
// file: Include/object.h

struct typeobject {
PyObject VAR HEAD
const char *tp name; /* For printing, in format "<module>.<name>" */
Py ssize t tp basicsize, tp itemsize; /* For allocation */

/* Methods to implement standard operations */
destructor tp_dealloc;
// ... omitted ...

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp version tag;

destructor tp finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */
unsigned char tp _watched;

};
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This struct has many member variables. For example, tp_name is the name of
the type, and tp_dealloc is the destructor, which can be customized for different
types. The tp_doc is what you see when you printthe . _doc__ attribute of an object.
For illustration, let’s change the value of tp_name in the List type (PyList Type) and
recompile CPython to see what happens:

// file: Objects/listobject.c
PyTypeObject PyList Type = {
PyVarObject HEAD INIT(&PyType Type, 0)

"list-Hello-World", // <-- changed here
sizeof(PyListObject),

0,

(destructor)list dealloc, /* tp dealloc */
// ... omitted ...

PyObject GC Del, /* tp free */

.tp_vectorcall = list vectorcall,
};

I changed the tp_name of PyList Type from "list" to "list-Hello-World". After
recompiling with make, when I use the built-in type() function in the Python REPL to
print the type, the type name appears as 1ist-Hello-World:

$ ./python.exe

Python 3.12.6+ (heads/code-review-dirty:914b9826fe6, Sep 17 2024, 17:11:15)
[Clang 15.0.0 (clang-1500.3.9.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> a = [1, 2, 3]

>>> type(a)

<class 'list-Hello-World'>
>>>

There’s not much use for this, and you shouldn’t do it in practice—it’s just a fun

demonstration.
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We’ll cover more members of typeobject in later sections as they become relevant.
For now, let’s look at the very beginning: PyObject VAR_HEAD:

// file: Include/object.h
#define PyObject VAR HEAD PyVarObject ob_base;

Looking up the definition of PyVarObject, you'll find it right next to the previously
mentioned object:

// file: Include/object.h

typedef struct {

PyObject ob_base;

Py ssize t ob_size; /* Number of items in variable part */
} PyVarObject;

PyVarObject has two members: ob_base, which is a PyObject, and ob_size, which
indicates the “size” or “count” of items in the variable part. What does this mean? For
example, in alist, ob_size is the number of elements in the list; for a string, it indicates
the string’s length. For mutable objects (like lists), ob_size changes when elements
are added or removed. For immutable objects (like strings or tuples), ob_size remains
constant—no methods are provided to change it.

Summary

PyObject is the core struct representing objects in CPython. It plays a crucial role in
Python’s internals. ob_refcnt is used to track how many times an object is referenced;
when this count drops to 0, the object is reclaimed. The ob_type member points to a
PyTypeObject, which describes the object’s type and encapsulates its behavior and
characteristics—much of Python’s object-oriented functionality revolves around this.
Thanks to ob_type, each PyObject can have a different type, enabling features like
polymorphism and inheritance.

We'll pause our introduction to PyTypeObject here for now. In the next section, we'll
take a look at how an object is created in the world of Python.
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How Objects Are Created
in CPython

Let’s start with a very simple, albeit not very useful, piece of Python code:

class Cat:
pass

kitty = Cat()

This Python code looks quite straightforward. Defining a class and then creating
an instance (object) from it is a common operation in Python. But do you know what'’s
happening behind the scenes when the kitty instance is created from the Cat class?
If you've written Python classes before, you are probably familiar with the _init ()
function and know its purpose. However, you may not be as familiar with another similar
function called __new__ (). In the following, we'll take a look at what happens under the
hood when an object is created by examining the CPython source code and also explore
the difference between these two functions.

Running the Program!
Step 0: Code Analysis

Although Python does not require compilation like C, the interpreter still has to
understand the code we write. The first step is tokenization. Tokenization is the process
where the source code is split into individual tokens. To illustrate, here’s a simple
example:

a=1+2
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This line of code would be broken down into the following tokens:

NAME (a)
EQUAL (=)
NUMBER (1)
PLUS (+)
NUMBER (2)

The purpose of this process is to convert raw source code into syntactically

meaningful fragments that can be understood by the interpreter. In CPython,

this process is handled in Parser/tokenizer.c, with the key function being _
PyTokenizer Get():

// file: Parser/tokenizer.c

int PyTokenizer Get(struct tok state *tok, struct token *token) {
int result = tok get(tok, token);
if (tok->decoding erred) {
result = ERRORTOKEN;
tok->done = E_DECODE;

}

return result;

The tok get() function inside is responsible for transforming the source code into
tokens. This function deals with various details, including processing regular strings and
the handy F-Strings. The list of tokens is stored in Grammaxr/Tokens, so if you ever want to

add new keywords or syntax to Python, those are the files to look at.

Step 1: Transformation to AST

Once your code has been split into tokens, the next step is turning these tokens into an
Abstract Syntax Tree (AST). The goal here is to allow the interpreter to understand the

structure and meaning of your code.
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As mentioned in earlier chapters, within the CPython project structure, there are
directories named Grammar and Parser dedicated to these tasks. The actual process of
parsing into an AST is somewhat complex and goes beyond the scope of this book, so for
now, it’s enough to know that this step takes place.

Step 2: Compilation to Bytecode

Next, the parsed AST is compiled into bytecode. Wait—compiled? Isn’t Python an
interpreted language? That'’s correct. While Python is interpreted, the interpreter
first compiles your code into an intermediate form known as bytecode, which is then
executed.

This might not feel so obvious if you're working with a single . py file. As an example:
ifyou have a.py and b.py and a.py contains import b, the contents of b.py will be
compiled to bytecode and stored in a file named b. cpython-312.pyc within the __
pycache _ directory. The naming convention is easy to figure out: cpython-312 refers to
the version of the Python interpreter (Python 3.12 in this case).

So, ifyou have ever seena __pycache__ directory in your Python project, those
are the compiled bytecode files. The next time the same piece of Python code is run,
the interpreter first checks whether a matching . pyc file exists and if recompilation is
necessary. If the . pyc file is present and doesn’t need to be recompiled, it is loaded and
executed directly by the Python Virtual Machine (VM).

The code responsible for compiling an AST to bytecode can be found in the CPython
project at Python/compile.c. The function PyAST Compile() takes the AST and
produces an executable code object. You can explore how your own code is translated
into bytecode using Python’s built-in dis module:

$ python -m dis demo.py

The output might look like this:

0 0 RESUME 0
1 2 PUSH NULL
4 LOAD BUILD CLASS
6 LOAD_CONST 0 (<code object Cat>)
8 MAKE_FUNCTION 0
10 LOAD_CONST 1 ('Cat')
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12 CALL 2
20 STORE_NAME 0 (Cat)
4 22 PUSH _NULL
24 LOAD NAME 0 (Cat)
26 CALL 0
34 STORE_NAME 1 (kitty)
36 RETURN_CONST 2 (None)
Disassembly of <code object Cat>:
1 0 RESUME 0
2 LOAD_NAME 0 (__name_ )
4 STORE_NAME 1 (__module )
6 LOAD CONST 0 ('Cat')
8 STORE_NAME 2 (__qualname_ )
2 10 RETURN_CONST 1 (None)

The numbers at the start (such as 0, 1, and 4) are line numbers in your original
source code. Two key points to note here: the LOAD BUILD CLASS instruction is used to
create the class, and the resulting class is stored in the Cat variable via STORE_NAME. In
CPython, the code corresponding to the LOAD BUILD CLASS operation is the following:

// file: Python/bltinmodule.c

static PyObject *
builtin__ build class (PyObject *self, PyObject *const *args,
Py ssize t nargs, PyObject *kwnames)

{
PyObject *func, *name, *winner, *prep;
// ... code omitted ...
return cls;

}

Let’s examine a relevant excerpt:

// file: Python/bltinmodule.c
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if (meta == NULL) {

/* if there are no bases, use type: */

if (PyTuple GET SIZE(bases) == 0) {
meta = (PyObject *) (&PyType Type);

}

/* else get the type of the first base */

else {
PyObject *base0 = PyTuple GET ITEM(bases, 0);
meta = (PyObject *)Py TYPE(base0);

}

Py INCREF(meta);

isclass = 1; /* meta is really a class */

From this, you see that if no metaclass and no parent class are specified (as in our
Cat example), the metaclass defaults to type, i.e., PyType Type. We’ll dedicate a full
chapter later to the relationship between classes and metaclasses.

There is much more to the builtin__ build class_ () function worth discussing,
but we’ll address it in more detail in later chapters on object-oriented programming. For
now, suffice it to say that this function returns a class, but in reality, that class is itself a
PyObject. This means that in Python, classes are also just objects.

Once the class is created, the next step is to instantiate an object.

Step 3: Instantiating an Object

If you look at the latter part of the previously shown bytecode, you'll see this:

// ... code omitted ...

10 LOAD_CONST 1 ('Cat")
12 CALL 2

20 STORE_NAME 0 (Cat)

4 22 PUSH_NULL

24 LOAD_NAME 0 (Cat)
26 CALL 0

34 STORE_NAME 1 (kitty)
36 RETURN_CONST 2 (None)

// ... code omitted ...
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When you execute kitty = Cat(), you are essentially “calling” the class object.
Python has many special (magic) methods with double underscores at both ends—
__call isoneofthem. Any objectwitha call method can be “called” like a
function.

Even though our custom Cat class does notimplement _call , its metaclass is
type, which does have this method. Thus, “calling” or “executing” the Cat class triggers
the tp_call member of the type class:

// file: Objects/typeobject.c

PyTypeObject PyType Type = {
PyVarObject HEAD INIT(&PyType Type, 0)

"type", /* tp_name */
sizeof(PyHeapTypeObject), /* tp basicsize */
sizeof (PyMemberDef), /* tp itemsize */
(destructor)type dealloc, /* tp dealloc */
// ... code omitted ...

0, /* tp_hash */
(ternaryfunc)type call, /* tp call */

0, /* tp str */
(getattrofunc) Py type getattro, /* tp_getattro */

.tp_vectorcall = type vectorcall,

};

You'll see that the tp_call member points to a function called type_call. Hereis a
relevant excerpt of the implementation:

// file: Objects/typeobject.c

static PyObject *
type call(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

PyObject *obj;

// ... code omitted ...

obj
obj

type->tp_new(type, args, kwds);
_Py CheckFunctionResult(tstate, (PyObject*)type, obj, NULL);
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if (obj == NULL)
return NULL;

// ... code omitted ...
type = Py TYPE(obj);
if (type->tp_init != NULL) {
int res = type->tp_init(obj, args, kwds);
if (res < 0) {
assert( PyErr Occurred(tstate));
Py SETREF(obj, NULL);

}
else {

assert(! PyErr Occurred(tstate));
}

}

return obj;

Within the type call() function, the type->tp new() function is called first to
create the object. If successful, type->tp _init() is then called to initialize the object.
These tp_new() and tp_init() functionsin C correspondtothe new and _init
methods in Python, respectively.

Summary

If you write a class and instantiate it, the process goes through these steps:

Compilation stage:
1. Convert source code into tokens.
2. Parse tokens into an AST.
3. Compile the AST into bytecode.
Execution stage:

1. Call the class with parentheses (), which actually invokes the
tp_call() member method.
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2. The default tp_call() of the type class calls the tp_new()
function to create the object.

3. Itthen calls the object’s tp_init() function to initialize the object.

As a side note, type itself is quite interesting. You might be used to calling
type("hello kitty") to get the class name of a string. Many think of type() as just a
function, but it’s actually both an object and a class. In the implementation of type
call(), you'll find this section:

// file: Objects/typeobject.c

/* Special case: type(x) should return Py TYPE(x) */

/* We only want type itself to accept the one-argument form (#27157) */

if (type == &PyType Type) {
assert(args != NULL 8& PyTuple Check(args));
assert(kwds == NULL Il PyDict Check(kwds));
Py ssize t nargs = PyTuple GET SIZE(args);

if (nargs == 1 &% (kwds == NULL Il !'PyDict GET SIZE(kwds))) {
obj = (PyObject *) Py TYPE(PyTuple GET ITEM(args, 0));
return Py NewRef(obj);

}

/* SF bug 475327 -- if that didn't trigger, we need 3
arguments. But PyArqg ParseTuple in type new may give
a msqg saying type() needs exactly 3. */
if (nargs != 3) {
PyErr SetString(PyExc_TypeError,
"type() takes 1 or 3 arguments");
return NULL;

}

From the comments and code, you can see that if three arguments are provided, you

can use type() to create a new class. If a single argument is passed, type() returns the
type of that argument. This is why type(123) returns <class 'int'> and type('hello
kitty') returns <class 'str'>.
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Everything Is an Object:
Part 2

In the core implementation of CPython, PyTypeObject plays a significant role.

You may have heard the saying “Everything is an object” in Python. Every object has
its type, and PyTypeObject is the fundamental structure that describes these types. It
is one of Python’s core structures, defining the behavior, attributes, and methods of all
Python types. In this chapter, let’s continue exploring some interesting design aspects
hidden within.

PyTypeObject

In CPython, PyTypeObject is the foundation of all Python objects. It defines their
behavior, attributes, and methods. Here is the definition of PyTypeObject:

// file: Include/object.h

struct typeobject {
PyObject VAR HEAD
const char *tp name; /* For printing, in format "<module>.<name>" */
Py ssize t tp basicsize, tp itemsize; /* For allocation */

// ... omitted ...
b
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To avoid taking up too much space, only a portion of the structure is shown here. You
can find the complete definition of PyTypeObject in the original Include/object.h file.
This structure contains all the information needed for a type, such as the type’s name,
size, methods, attributes, and how it handles memory allocation, attribute access, object
creation, and destruction.

Let’s briefly organize and categorize its parts:

Basic Members

e tp_name: The name of the type, for example, the result of calling
type() onint or list.

o tp basicsize, tp_itemsize: The source code comments state /*
For allocation */,indicating that these fields describe the memory
size occupied by the object.

o tp_dict: The attribute dictionary, which stores the type’s attributes.
This corresponds to the dict  attribute discussed previously, but
here, since we are talking about types, it’s slightly different from the
.__dict__ ofinstances or objects. That said, types themselves are
also objects—this is where things can get confusing.

o tp base: The base type; this field is used to describe inheritance
relationships.

Methods and Operators

e tp_new: The function called when an object is being created.
o tp_init: The function called after the object has been created.

o tp_alloc: The function responsible for allocating memory for
the object.

o tp_dealloc: The function called when the object is about to be
collected by the GC.
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o tp_call: The function invoked when the object is called as a function
(i.e., when parentheses () are used).

e tp strandtp repr:Asthe names suggest, these are related to the
magic methods __str__and __repr__ we previously introduced in
advanced object-oriented programming.

Access Methods

o tp_as number: Defines how the object behaves as a numeric type,
such as handling arithmetic and bitwise operations

o tp_as_sequence: Defines how the object behaves as a sequence type,

enabling operations like indexing, slicing, and concatenation

o tp_as_mapping: Defines how the object behaves as a mapping type,
such as key/value access and length calculation

This part is especially interesting and will be discussed in more detail later.

Other

o tp flags: Flags indicating type features.
o tp_doc: As you might guess, this is the type’s documentation string.

o tp _methods: Used to define various methods provided by the type.
These can be called like built-in methods in Python, and they point to
a PyMethodDef structure.

o tp _members: Structure for defining member variables for the type.
o tp getset: Related to property access in Python.

o tp descr getand tp_descr set:Related to Python’s descriptor
protocol.

o tp_richcompare: Used for determining how the type handles
comparisons.
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Looking at the definition of PyTypeObject alone may still feel a bit abstract, so let’s

use the built-in list type as a concrete example to see how this structure is applied in

practice.

The List Type

The list type is defined in the CPython source code as follows:

// file: Objects/listobject.c

PyTypeObject PyList Type = {

36

PyVarObject HEAD INIT(&PyType Type, 0)
"list",

sizeof(PyListObject),

0,

(destructor)list dealloc,

(reprfunc)list repr,

o,

&list_as_sequence,
&list_as_mapping,
PyObject_HashNotImplemented,
0,

0,

PyObject GenericGetAttr,

0,

0,

Py TPFLAGS DEFAULT | Py TPFLAGS_HAVE_GC

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

tp_dealloc */
tp_vectorcall offset */
tp getattr */
tp_setattr */
tp_as_async */

tp repr */
tp_as_number */
tp_as_sequence */
tp_as_mapping */
tp_hash */

tp call */

tp str */

tp _getattro */
tp_setattro */
tp_as_buffer */

Py TPFLAGS BASETYPE | Py TPFLAGS LIST SUBCLASS |
Py TPFLAGS MATCH SELF | Py TPFLAGS SEQUENCE, /* tp flags */

list  init doc_,
(traverseproc)list traverse,
(inquiry) list clear,

/* tp doc */
/* tp_traverse */
/* tp clear */



};

list richcompare,
OJ

list iter,

O)

list methods,

)

)

- -

-

O O O O O o

)

0,
(initproc)list  init
PyType GenericAlloc,
PyType _GenericNew,
PyObject GC Del,

.tp_vectorcall = list vectorcall,

implemented.

Printing a List

CHAPTER 5

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Let’s first examine what tp_repr of PyList Type does:

// file: Objects/listobject.c

static PyObject *
list repr(PyListObject *v)

{

// ... omitted ...
if (Py SIZE(v) == 0) {

return PyUnicode FromString("[]");

}
// ... omitted ...

EVERYTHING IS AN OBJECT: PART 2

tp_richcompare */
tp weaklistoffset */
tp iter */

tp iternext */
tp_methods */
tp_members */

tp getset */

tp base */

tp dict */

tp descr get */
tp descr set */
tp dictoffset */
tp init */
tp_alloc */
tp_new */

tp free */

Fields that are set to 0 indicate that the corresponding structure members are not

37



CHAPTER 5  EVERYTHING IS AN OBJECT: PART 2

_PyUnicodeWriter Init(8writer);

writer.overallocate = 1;

/5t 20 (len - 1) + 7] ¥/

writer.min length = 1 + 1 + (2 + 1) * (Py SIZE(v) - 1) + 1;

if (_PyUnicodeWriter WriteChar(8writer, '[') < 0)
goto error;

for (i = 0; i < Py SIZE(v); ++i) {
if (i > 0) {
if (_PyUnicodeWriter WriteASCIIString(8writer, ", ", 2) < 0)
goto error;

}

// ... omitted ...
}

writer.overallocate = 0;
if (_PyUnicodeWriter WriteChar(8writer, ']') < 0)
goto error;

Py ReprLeave((PyObject *)v);
return PyUnicodeWriter Finish(&writer);
// ... omitted ...

You can see that if the list is empty, it prints [ ]; if it has elements, it prints each

element separated by commas and enclosed in square brackets. There’s an interesting

calculation for string length:
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writer.min length = 1 + 1 + (2 + 1) * (Py SIZE(v) - 1) + 1;
For instance, for [1, 2, 3], the total space required is:
e “[”: Opening bracket
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e 9 2”:Separator and subsequent elements for each after the first

e “]”: Closing bracket
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At first glance, this formula may look odd, but by computing the required minimum
string length up front, the PyUnicodelriter () can allocate enough memory in one go,
avoiding repeated reallocations during string concatenation and increasing efficiency.

Using the Bracket Operator

Earlier, we mentioned tp_as_sequence and tp_as_mapping. One deals with sequence
types like lists or tuples, and the other deals with mapping types like dictionaries. Take a
look at the following code example:

= (0, 1, 2) # This is a tuple

= [0, 1, 2] # This is a list
c=9{0:0,1:1, 2: 2 } # This is a dictionary
print(a[o])
print(b[o0])
print(c[o])

In Python, using brackets to access values seems perfectly natural. But from the
interpreter’s perspective, how does it determine whether the bracket operation is for a
tuple, a list, or a dictionary? In other words, how does it know to look for tp_as_sequence
or tp_as_mapping?

Let’s use Python’s built-in dis module to examine the bytecode generated by the
code above. You'll find that for all three objects, the operation uses the BINARY_ SUBSCR
instruction. Let’s see what this instruction does:

// file: Python/bytecodes.c

inst(BINARY SUBSCR, (unused/1, container, sub -- res)) {

#if ENABLE_SPECIALIZATION

_PyBinarySubscrCache *cache = (_PyBinarySubscrCache *)next instr;

if (ADAPTIVE COUNTER IS ZERO(cache->counter)) {
next_instr--;
_Py Specialize BinarySubscr(container, sub, next instr);
DISPATCH SAME_OPARG();

}

STAT_INC(BINARY_SUBSCR, deferred);

DECREMENT ADAPTIVE COUNTER(cache->counter);
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ttendif /* ENABLE SPECIALIZATION */
res = PyObject GetItem(container, sub);
DECREF_INPUTS();

ERROR IF(res == NULL, error);

You can see that the real action happens in the PyObject GetItem() function.
Digging into that:

// file: Objects/abstract.c

PyObject *
PyObject GetItem(PyObject *o, PyObject *key)
{
// ... omitted ...
PyMappingMethods *m = Py TYPE(o)->tp_as _mapping;
if (m & m->mp_subscript) {
PyObject *item = m->mp_subscript(o, key);
return item;

}

PySequenceMethods *ms = Py TYPE(o)->tp_as_sequence;
if (ms &&% ms->sq_item) {
// ... omitted ...

}
// ... omitted ...

This code shows that when the bracket operator is used, it first looks at the tp_as_
mapping member and checks if mp_subscript is implemented. If not, it then checks the
tp_as_sequence member for sq_item.

In other words, even if both mp_subscript and sq_item are present, when using
the brackets operator, the lookup order is mp_subscript first, then sq_item. If neither
is implemented, you'll get an error message like 'object is not subscriptable’, for
example:

>>> user = 9527
>>> user[123]
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Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'int' object is not subscriptable

List Methods

Next, let’'s look at the tp_methods member, which defines the set of methods provided by
the type. For lists, it's implemented like this:

// file: Objects/listobject.c

static PyMethodDef list methods[] = {
{"_ getitem ", (PyCFunction)list subscript, METH OIMETH_ COEXIST,
PyDoc_STR(" getitem ($self, index, /)\n--\n\nReturn self[index].")},
LIST __ REVERSED _ METHODDEF
LIST  SIZEOF _ METHODDEF
LIST CLEAR METHODDEF
LIST COPY METHODDEF
LIST APPEND METHODDEF
LIST INSERT METHODDEF
LIST_EXTEND_METHODDEF
LIST _POP_METHODDEF
LIST REMOVE_METHODDEF
LIST_INDEX METHODDEF
LIST _COUNT METHODDEF
LIST REVERSE_METHODDEF
LIST SORT METHODDEF
{" _class getitem ", Py GenericAlias, METH_OIMETH CLASS, PyDoc
STR("See PEP 585")},
{NULL, NULL} /* sentinel */

};
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These names are mostly self-explanatory. For example, if we follow the macro LIST _
APPEND_METHODDEF:

// file: Objects/clinic/listobject.c.h

#define LIST APPEND METHODDEF \
{"append", (PyCFunction)list append, METH O, list append doc_ },

We find that it refers to the 1ist_append function, which is used to add an element to
a list. Other methods work similarly.

List Addition

When two lists are added together using the + operator:
[1, 2, 3] + [4, 5, 6]

Earlier, we mentioned the tp_as_sequence member, which defines how an object
behaves as a sequence type (indexing, slicing, concatenation, and so on). For lists, tp_
as_sequence points to the 1ist_as_sequence structure:

// file: Objects/listobject.c

static PySequenceMethods 1list as sequence = {

(lenfunc)list length, /* sq_length */
(binaryfunc)list concat, /* sq_concat */
(ssizeargfunc)list repeat, /* sq_repeat */
(ssizeargfunc)list item, /* sq_item */

0, /* sq slice */
(ssizeobjargproc)list ass item, /* sq_ass_item */

0, /* sq_ass_slice */
(objobjproc)list contains, /* sq_contains */
(binaryfunc)list inplace concat, /* sq_inplace concat */
(ssizeargfunc)list inplace repeat, /* sq_inplace _repeat */

};
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Here, sq_concat handles concatenation and points to the function 1ist_concat().
Let’s follow it:

// file: Objects/listobject.c

static PyObject *
list concat(PyListObject *a, PyObject *bb)

{
// ... omitted ...
size = Py SIZE(a) + Py SIZE(b);
if (size == 0) {
return PylList New(0);
}
np = (PyListObject *) list new prealloc(size);
// ... omitted ...
return (PyObject *)np;
}

From the source code, when two lists are added together, a new list is created and
returned. Even if both lists are empty, a new empty list is still created.

Just below sq_concat is a similar member called sq_inplace_concat, which is
triggered when using the += assignment operator. It currently points to list_inplace
concat():

// file: Objects/listobject.c

static PyObject *
list _inplace concat(PyListObject *self, PyObject *other)
{

PyObject *result;

result = list extend(self, other);
if (result == NULL)
return result;
Py DECREF(result);
return Py NewRef(self);

43



CHAPTER 5  EVERYTHING IS AN OBJECT: PART 2

This function calls 1ist_extend(), which adds the elements of other to self.
Therefore, the += operation on a list will modify the original list rather than creating a

new one, unlike the + operator.

Number of Elements

In Python, you can use the len() function to get the number of elements in a list:
len([1, 2, 3]) #3

This is straightforward, but how does it work under the hood? Why can the len()
function be used on many different types?
Let's trace the len() function, which is a built-in defined in Python/bltinmodule.c:

// file: Python/bltinmodule.c

static PyObject *
builtin len(PyObject *module, PyObject *obj)
{

Py ssize t res;

res = PyObject Size(obj);

if (res < 0) {
assert(PyErr Occurred());
return NULL;

}

return Pylong FromSsize t(res);

The implementation is simple: it just calls PyObject Size(). Digging into
PyObject Size():

// file: Objects/abstract.c
Py ssize t
PyObject Size(PyObject *o)

{
// ... omitted ...

PySequenceMethods *m = Py TYPE(o)->tp_as_sequence;
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if (m & m->sq_length) {
Py ssize t len = m->sq_length(o);
assert( Py CheckSlotResult(o, " len ", len >= 0));
return len;

}
return PyMapping Size(o);

This function first checks the tp_as_sequence member and, if present, uses the sq_
length method of PySequenceMethods, which points to 1ist_length():

// file: Objects/listobject.c
static Py ssize t

list length(PyListObject *a)

{
return Py SIZE(a);

This function returns the length of the object. If the type is not a sequence type (i.e.,
itlacks tp_as_sequence), it calls PyMapping Size(), which invokes the type’s tp_as
mapping member’s mp_length function to return the length.

The Python documentation for the len() function says:

Return the length (the number of items) of an object. The
argument may be a sequence (such as a string, bytes, tuple, list, or
range) or a collection (such as a dictionary, set, or frozen set).

This explains why len() can be used on string, list, tuple (sequence types), or
dictionary and similar mapping types.

o len:https://docs.python.org/3/1library/functions.html#len

List Comparison

Finally, let’s close this chapter with a deceptively simple but tricky question:

float("nan") # NaN
float("nan") # NaN

a
b
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print([a] == [a]) # A. What does this print?
print([a] == [b]) # B. What does this print?

In many languages, floating point numbers follow the IEEE 754 standard, in which
NaN is not equal to anything, including itself. But what happens if you put them in lists?
The result is surprising.

When lists are compared, Python uses the tp_richcompare member of PyList Type,
which is implemented by the 1list richcompare() function:

// file: Objects/listobject.c

static PyObject *
list richcompare(PyObject *v, PyObject *w, int op)

{
// ... omitted ...

This function is a little lengthy, so let’s highlight two main points. First, if the lengths
differ (for equality or inequality), the function returns immediately:

// file: Objects/listobject.c

vl
wl

(PyListObject *)v;
(PyListObject *)w;

if (Py SIZE(vl) != Py SIZE(wl) 8% (op == Py EQ Il op == Py NE)) {
/* Shortcut: if the lengths differ, the lists differ */
if (op == Py EQ)
Py RETURN_FALSE;
else
Py RETURN_TRUE;

If the two lists have the same number of elements, each corresponding pair of
elements is compared for object identity (i.e., their memory address):

// file: Objects/listobject.c

for (i = 0; i < Py SIZE(vl) &% i < Py SIZE(wl); i++) {
PyObject *vitem = vl->ob item[i];
PyObject *witem = wl->ob item[i];
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if (vitem == witem) {
continue;

}
// ... omitted ...

Back to the original question:

a = float("nan") # NaN
b = float("nan") # NaN

print([a] == [a]) # A. What does this print?
print([a] == [b]) # B. What does this print?

For [a] == [a], the number of elements is the same, then the objects are compared
by memory address. The variable a compared to itself means they are the same object, so
the result is True.

In [a] == [b], although the number of elements is the same and both variables hold
NaN, they are two different objects in memory from Python’s perspective, so the result
is False.

Summary

Although we used the 1ist type as our main example, other built-in types follow a
similar implementation. In CPython, all types are defined using the PyTypeObject
structure, which specifies the type’s name, size, methods, attributes, and how it handles
memory allocation, attribute access, object creation, and destruction. These methods
and attribute implementations are what define the behavior and features of Python
objects.

In the next chapter, we will leverage what we've learned so far to write a simple type
in CPython and see how these components work together.
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Defining a Custom Built-in
Type

In the previous chapter, we took a look at the PyType Type structure and used the

PyList Type structure for lists as an example. In this chapter, I'll demonstrate a similar

approach to create our own built-in type named PyKitty Type and even make it
perform backflips!

Before we begin, please note: Don’t do this in CPython for production purposes. This

is purely an experimental exercise just for fun.

Creating a New Type

First, I'll create two files: kittyobject.c and kittyobject.h. The header (.h) file is
relatively straightforward and should be placed inside the Includes directory:

// file: Includes/kittyobject.h

#ifndef Py KITTYOBIECT H
#define Py KITTYOBIECT H

#include "Python.h"
extern PyTypeObject PyKitty Type;
#endif

I plan to declare a type called PyKitty Type. You can choose any name you
like, as long as it does not conflict with the names of other built-in types. Next, the

implementation in the . c file is a bit more involved. I'll place it in the Objects directory

alongside the list implementation (1istobject.c):

© Chien-Lung Kao 2025
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// file: Objects/kittyobject.c

#include <Python.h>
#include "kittyobject.h"

typedef struct {
PyObject HEAD
} KittyObject;

Here, similar to PyListObject, I define a structure called KittyObject. You may
add any additional member variables here as you see fit. I use the PyObject HEAD macro
instead of PyObject VAR HEAD (as used in PyListObject), because PyObject VAR HEAD
includes an ob_size field for the size of the object. For PyKittyObject, we don’t need it,
so PyObject HEAD is sufficient and simpler

Defining Methods

Next, I want objects created from this type not only to be able to do backflips but also to
greet politely. Let’s define two simple functions:

// file: Objects/kittyobject.c

static PyObject *
kitty greeting(KittyObject *self, PyObject *Py UNUSED(ignored))
{
printf("Hello, Kitty\n");
Py RETURN_NONE;
}

static PyObject *
kitty backflip(KittyObject *self, PyObject *Py UNUSED(ignored))
{

printf("I can do backflip!\n");

Py RETURN_NONE;

}
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You can choose any function names you like, as long as they do not conflict
with others. Here, I've followed the naming pattern in 1istobject.c, prefixing the
function names with the type, such as kitty greetingand kitty backflip. Their
implementations are straightforward—just printing a message with printf().

To make the Python REPL output stand out for instances of our new type, I'll define a
custom function for the tp_repr member, here called kitty repr:

// file: Objects/kittyobject.c

static PyObject *
kitty repr(KittyObject *self)
{
return PyUnicode FromString("® Hello Kitty 2('O™*)skd");

By convention, _repr_ _isintended to display information useful to developers,
such as the memory address of the object. Here, however, I'm deliberately returning a
playful string just for fun.

Finally, following the example of 1ist dealloc in listobject.c, I'llimplement a
kitty dealloc function to handle memory deallocation:

// file: Objects/kittyobject.c

static void
kitty dealloc(KittyObject *self)

{
Py TYPE(self)->tp free((PyObject *)self);
}

Implementing the Type
Now it’s time to set up the internals of PyKitty Type:
// file: Objects/kittyobject.c

PyTypeObject PyKitty Type = {
PyVarObject HEAD INIT(&PyType Type, 0)
.tp_name = "kitty",

.tp_basicsize = sizeof(KittyObject),
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.tp_itemsize = o,

.tp_flags = Py TPFLAGS DEFAULT,

.tp_alloc = PyType GenericAlloc,

.tp_new = PyType GenericNew,

.tp_free = PyObject Del,

.tp_dealloc = (destructor) kitty dealloc,
.tp_doc = "Hello, Kitty",

};

This follows the PyList Type approachin listobject.c with a few adjustments. To
achieve an effect similar to strings <class 'str'> orlists <class 'list'>, Isettp_name
to "kitty".

As we learned in the previous chapter, simply defining kitty greeting, kitty
backflip, or kitty reprisn’t enough; we need to attach them to our PyKitty Type so
that they can actually be invoked:

// file: Objects/kittyobject.c

PyTypeObject PyKitty Type = {
PyVarObject HEAD INIT(&PyType Type, 0)
"kitty",

// ... (omitted) ...

.tp_doc = "Hello, Kitty",

.tp_repr = (reprfunc)kitty repr,
1

Here, I've set the kitty repr function to the tp_repr member. The other two
methods should be placed in the tp_methods array, so let’s prepare them:

// file: Objects/kittyobject.c

static PyMethodDef kitty methods[] = {
{"greeting", (PyCFunction)kitty greeting, METH NOARGS, "Hello"},
{"backflip", (PyCFunction)kitty backflip, METH NOARGS, "Backflip"},
{NULL, NULL}

};

This approach follows the 1ist_methods definition in 1istobject.c. Next, set the
pointer for the tp_methods member:
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// file: Objects/kittyobject.c

PyTypeObject PyKitty Type = {
PyVarObject HEAD INIT(&PyType Type, 0)
"kitty",
// ... (omitted) ...
.tp_doc = "Hello, Kitty",
.tp_repr = (reprfunc)kitty repr,
.tp_methods = kitty methods,

b5

DEFINING A CUSTOM BUILT-IN TYPE

This completes most of the implementation code for our new type.

Making It a Built-in Type

Next, I want this type to be available as a built-in—usable without any import

statements, like lists or tuples. To do this, open Python/bltinmodule.c and locate the
_PyBuiltin_Init() function. Inside this function, you'll find a macro called SETBUILTIN;

add our PyKitty Type there
// file: Python/bltinmodule.c

PyObject *
_PyBuiltin Init(PyInterpreterState *interp)

{
// ... (omitted) ...

SETBUILTIN("tuple", &PyTuple Type);
SETBUILTIN("type", &PyType _Type);
SETBUILTIN("zip", &PyZip Type);

SETBUILTIN("kitty", &PyKitty Type);

debug = PyBool FromLong(config->optimization level == 0);
if (PyDict SetItemString(dict, " debug ", debug) < 0) {

Py DECREF(debug);
return NULL;

}
// ... (omitted) ...
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Don't forget to include the .h file as well:
// file: Python/bltinmodule.c

#include "kittyobject.h"

Building and Running

Finally, make a small edit to your Makefile:
// file: Makefile.pre.in

OBJECT_OBJS= \
// ... (omitted) ...
Objects/unicodeobject.o \
Objects/unicodectype.o \
Objects/unionobject.o \
Objects/weakrefobject.o \
Objects/kittyobject.o \
@PERF_TRAMPOLINE_OBJ@

Make sure to include Objects/kittyobject.o.
Now you're ready to compile:

$ ./configure
$ make

Assuming everything builds successfully, let’s give it a try:

>>> kitty

<class 'kitty'>
>>> type(kitty)
<class 'type'>
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Awesome! The kitty type exists, and it’s available without an import. Let’s check a
bit further:

>>> help(kitty)

class kitty(object)
Hello, Kitty

I
I
| Methods defined here:
I

Looks like the tp_doc member works as expected. Now, let’s instantiate our
new object:

>>> cc = kitty()
>>> cc
@ Hello Kitty ('O ™)k

See? Our custom type really stands out! Let’s try calling the methods:

>>> cc.greeting()
Hello, Kitty

>>> cc.backflip()
I can do backflip!

Everything is working. However, at the moment, the kitty type does not support
initialization with arguments—so the greeting is always simply “Hello, Kitty’, which isn’t
very interesting. Next, let’s add support for initializing the object with a parameter.

Parameterized Initialization

Right now, the kitty type is a bit boring and always greets in the same way. We'd like to

give it a name upon creation, like this:

c = kitty()
c.greeting() # Hello

k = kitty("Nancy")
k.greeting() # Hello, Nancy
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If a parameter is provided, the greeting should include the name; otherwise, it
should default to just “Hello”.

To achieve this, our current KittyObject structure needs a place to store the name.
We’ll add a name member variable:

// file: Objects/kittyobject.c

typedef struct {
PyObject_HEAD
PyObject *name;
} KittyObject;

In Python classes, extra initialization parameters are typically handled in the
__init_ method, which maps to the tp_init member in PyTypeObject. Let’s
implement this:

// file: Objects/kittyobject.c

static int
kitty init(KittyObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"name", NULL};

PyObject *name = NULL;

if (!PyArg ParseTupleAndKeywords(args, kwds, "IU", kwlist, &name)) {
return -1;

}

if (name != NULL) {
Py INCREF(name);

}

Py XSETREF(self->name, name);
return O;
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A brief explanation:

o The function PyArg ParseTupleAndKeywords () parses the provided
arguments into Python objects.

o The Py INCREF() function increments the reference count of the
object so that it is not garbage-collected at the end of the function.

o Py XSETREF() sets the name member variable on our type.

Now, connect this function to the .tp_init member in PyKitty Type:
// file: Objects/kittyobject.c

PyTypeObject PyKitty Type = {
PyVarObject HEAD INIT(&PyType Type, 0) "kitty",
// ... (omitted) ...
.tp_repr = (reprfunc)kitty repr,
.tp_methods = kitty methods,
.tp_init = (initproc)kitty init,

b5

Lastly, update the original kitty greeting function so it prints the name if provided:
// file: Objects/kittyobject.c

static PyObject *
kitty greeting(KittyObject *self, PyObject *Py UNUSED(ignored))
{

if (self->name != NULL) {

printf("Hello, %s!\n", PyUnicode AsUTF8(self->name));
} else {

printf("Hello!\n");
}

Py RETURN_NONE;
}

Recompile, and let’s test:

>>> ¢ = kitty()
>>> c.greeting()
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Hello!

>>> k = kitty("Nancy")
>>> k.greeting()
Hello, Nancy!

>>>

Success! Next time, you can show your friends your Python that can do backflips!
Full source code:

// file: Includes/kittyobject.h

#ifndef Py KITTYOBIECT H
#define Py KITTYOBIECT H

#include "Python.h"
extern PyTypeObject PyKitty Type;

#endif
// file: Objects/kittyobject.c

#include <Python.h>
#include "kittyobject.h"

typedef struct {
PyObject HEAD
PyObject *name;
} KittyObject;

static PyObject *
kitty greeting(KittyObject *self, PyObject *Py UNUSED(ignored))
{
if (self->name != NULL) {
printf("Hello, %s!\n", PyUnicode AsUTF8(self->name));
} else {
printf("Hello!\n");
}

Py RETURN_NONE;
}
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static PyObject *

kitty backflip(KittyObject *self, PyObject *Py UNUSED(ignored))

{
printf("I can do backflip!\n");

Py RETURN_NONE;
}

static PyObject *
kitty repr(KittyObject *self)
{
return PyUnicode FromString("® Hello Kitty 2('O*)sk&");

}

static void
kitty dealloc(KittyObject *self)

{
Py XDECREF(self->name);

Py TYPE(self)->tp free((PyObject *)self);
}

static int

kitty init(KittyObject *self, PyObject *args, PyObject *kwds)

{
static char *kwlist[] = {"name", NULL};

PyObject *name = NULL;

if (!PyArg ParseTupleAndKeywords(args, kwds, "IU", kwlist, &name)) {

return -1;

}

if (name != NULL) {
Py INCREF(name);

}

Py XSETREF(self->name, name);
return O;
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static PyMethodDef kitty methods[] = {

};

{"greeting", (PyCFunction)kitty greeting, METH_NOARGS,
{"backflip", (PyCFunction)kitty backflip, METH_NOARGS,

{NULL, NULL}

PyTypeObject PyKitty Type = {

};
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PyVarObject HEAD INIT(&PyType Type, 0) "kitty",
.tp_basicsize = sizeof(KittyObject),
.tp_itemsize = o,

.tp_flags = Py TPFLAGS DEFAULT,

.tp_alloc = PyType GenericAlloc,

.tp_new = PyType GenericNew,

.tp_dealloc = (destructor) kitty dealloc,
.tp_free = PyObject Del,

.tp_doc = "Hello, Kitty",

.tp_repr = (reprfunc)kitty repr,
.tp_methods = kitty methods,

.tp_init = (initproc)kitty init,

"Hello"},
"Backflip"},



CHAPTER 7

What Happens During
Module Import

Regardless of whether it’s a built-in or a third-party package, I'm sure everyone has used
the import keyword to bring in a module when writing Python programs. So, can you
guess what the differences are among the following three ways of importing?

# Style A
import sys
print(sys.version)

# Style B
import sys as s
print(s.version)

# Style C
from sys import version
print(version)

Different Ways of Importing

In terms of result, all three will successfully print version and display the current Python
version. If you look at the compiled bytecode, you'll find that Style A and Style B are
almost identical. The main difference is that Style A stores the module as sys using the
STORE_NAME instruction, while Style B with the as keyword stores it as s.

1 2 LOAD_CONST 0 (0)
4 LOAD_CONST 1 (None)
6 IMPORT NAME 0 (sys)
8 STORE_NAME 0 (sys)
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4 46 LOAD CONST 0 (0)
48 LOAD_CONST 1 (None)
50 IMPORT NAME 0 (sys)
52 STORE_NAME 3 (s)

Both styles use the IMPORT_NAME instruction to import the module; other differences
are minimal. However, the from ... import ... syntax differs slightly in its execution:

7 90 LOAD_CONST 0 (0)
92 LOAD _CONST 2 (('version',))
94 IMPORT NAME 0 (sys)
96 IMPORT FROM 2 (version)
98 STORE_NAME 2 (version)
100 POP_TOP

Besides IMPORT_NAME, there’s also an IMPORT_FROM instruction. Let’s take a look at
what these two instructions do.

The import Instruction

Starting with IMPORT_NAME, you can find its source code in Python/bytecodes.c:
// file: Python/bytecodes.c

inst(IMPORT NAME, (level, fromlist -- res)) {
PyObject *name = GETITEM(frame->f code->co names, oparg);
res = import name(tstate, frame, name, fromlist, level);
DECREF_INPUTS();
ERROR IF(res == NULL, error);

The initial inst macro is simply for simplifying switch-case statements. The real
work is done by the import_name() function:

// file: Python/ceval.c

static PyObject *
import name(PyThreadState *tstate, PyInterpreterFrame *frame,
PyObject *name, PyObject *fromlist, PyObject *level)
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// ... omitted ...

Let’s continue to see what happens inside:
// file: Python/ceval.c

// ... omitted ...
import func = PyObject GetItem(frame->f builtins, & Py ID(__import ));
if (import func == NULL) {
if (_PyErr ExceptionMatches(tstate, PyExc KeyError)) {
_PyErr SetString(tstate, PyExc_ImportError, " import  not
found");

}
return NULL;

}
// ... omitted ...

Here, it retrieves the __import__ function from the built-ins; if not found, you'll get
an “import not found” error. “But how could a built-in like __import__ be missing?”
you may wonder. Under normal circumstances, it should always be there, but you can
purposely delete it as follows:

# It exists at first
>>>  import
<built-in function _ import_ >

# Delete it with the del keyword
>>> import builtins
>>> del builtins. import

# Now try importing another module

>>> import sys

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: _ import  not found
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And indeed, we get the expected error message. This is just for experimentation—
don’t sabotage yourself or your coworkers like this without good reason! Let’s return to
the original import_name() function:

// file: Python/ceval.c

// ... omitted ...
if (_PyImport IsDefaultImportFunc(tstate->interp, import func)) {
Py DECREF(import func);
int ilevel = Pylong AsInt(level);
if (ilevel == -1 & PyErr Occurred(tstate)) {
return NULL;

}
res = PyImport ImportModulelevelObject(

name,
frame->f globals,
locals == NULL ? Py None :locals,
fromlist,
ilevel);

return res;

}
// ... omitted ...

The real import work happens in the PyImport ImportModulelLevelObject()
function. Let’s continue tracing:

// file: Python/import.c

PyObject *

PyImport ImportModulelLevelObject(PyObject *name, PyObject *globals,
PyObject *locals, PyObject *fromlist,
int level)

{
// ... omitted ...

}
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Within this function, you'll find the following:
// file: Python/import.c

mod = import get module(tstate, abs name);
if (mod == NULL 8% PyErr Occurred(tstate)) {
goto error;

If you trace into the import_get module() function, you'll see that Python tries
to fetch the module from the sys.modules dictionary first. If found, it uses it directly;
otherwise, it proceeds to execute import _find and load():

// file: Python/import.c

static PyObject *
import find and load(PyThreadState *tstate, PyObject *abs name)

{
// ... omitted ...

mod = PyObject CallMethodObjArgs(IMPORTLIB(interp), & Py ID( find_
and load), abs name, IMPORT FUNC(interp), NULL);

// ... omitted ...

Here, it calls the find_and_load() function from the importlib module to find
and load the module. This importlib is written in Python, not C. The find and_
load() function is not a public API, so if you want to call it in REPL, you'll need to
use importlib. bootstrap. find and_load().However, it's recommended to use
importlib’s import module() function for importing modules directly.

Now that we’ve gotten to the importlib module, let’s see what find and_
load() does:

# file: Lib/importlib/ bootstrap.py

def find and load(name, import ):
module = sys.modules.get(name, NEEDS LOADING)
if (module is NEEDS LOADING or
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getattr(getattr(module, " spec_ ", None),
False)):
with ModulelLockManager(name):
module = sys.modules.get(name, NEEDS LOADING)
if module is NEEDS LOADING:
return find and load unlocked(name, import )

_initializing",

# ... omitted ...
return module

Finally, we’re seeing some Python code! In this function, Python first tries to fetch
the module from the sys.modules dictionary. If it exists, it returns it immediately; if
not, it calls the find_and load unlocked() function to load the module. Tracing into
_find_and_load unlocked(), you'll see the imported module is added to sys.modules,
so subsequent imports can use it directly

The from .. import .. Instruction

Next, let’s look at the IMPORT_FROM instruction. You can find its definition in Python /
bytecodes.c:

// file: Python/bytecodes.c

inst(IMPORT FROM, (from -- from, res)) {
PyObject *name = GETITEM(frame->f code->co_names, oparg);
res = import from(tstate, from, name);
ERROR IF(res == NULL, error);

Here, it calls the import from() function. Let’s follow up:
// file: Python/ceval.c

static PyObject *
import from(PyThreadState *tstate, PyObject *v, PyObject *name)

{
PyObject *x;
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PyObject *fullmodname, *pkgname, *pkgpath, *pkgname or unknown,
*errmsg;

if (_PyObject LookupAttr(v, name, &x) != 0) {
return x;

}
// ... omitted ...

This tries to look up the attribute name from the module object v. If found, it returns
that attribute. If not, the execution continues below. Here, v is the module that was
previously imported by the IMPORT_FROM instruction. In other words, the from parameter
stores the already-imported module. Looking further:

// file: Python/ceval.c

fullmodname = PyUnicode FromFormat("%U.%U", pkgname, name);
if (fullmodname == NULL) {

Py DECREF(pkgname);

return NULL;
}
x = PyImport GetModule(fullmodname);

Here, fullmodname combines the package and attribute name to form the full
module name, then tries to retrieve it from sys.modules via PyImport GetModule().
Although programming textbooks suggest using meaningful variable names, here the
variable x means the module—maybe the author didn’t want to overthink the name :)

In short: the import statement calls import_name(), which utilizes the importlib
module for lookup and import. The from.. import.. statement relies on import_
from(), which first tries to fetch the attribute from the object and only then checks sys.
modules.

Crazy Side-Effects!

While following find_and_load unlocked(), I stumbled upon a comment: # Crazy
side-effects! that caught my attention:

# file: Lib/importlib/ bootstrap.py
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def find and load unlocked(name, import ):
# ... omitted ...
if parent:
if parent net in sys.modules:
_call with frames removed(import , parent)
# Crazy side-effects!
if name in sys.modules:
return sys.modules[name]
parent module = sys.modules|[parent]

What kind of side-effect could be so wild that the developers had to leave this
comment in the CPython source code? How crazy is “crazy”? In fact, this code is
handling circular import situations. Let’s illustrate this with an extreme example.
Assume we have the following project structure:

he

-

lo

__init_ .py
child.py
parent.py
main.py

1
1T

File contents are as follows:
# file: hello/ init .py

from .parent import give me child
# file: hello/child.py

class ChildClass:
pass
# file: hello/parent.py

from .child import ChildClass
def give me child():

return ChildClass()
# file: main.py

import hello.child
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What happens when you run main.py? Let’s see:

1. Python prepares to import hello.child. Before doing so, it
attempts to import the hello package.

2. While importing the hello package, Python executes
init_ .py.

3. In__init_.py, Python tries to import give me child from the
parent module—so it has to execute parent.py.

4. The firstline in parent.pyis from .child import ChildClass, so
Python now tries to import the child module—the very module
we wanted to import initially!

5. childisimported and added to the sys.modules dictionary.

6. Execution returns to parent.py, completing the definition of
give me child.

7. Finally, execution returns to main.py, but now hello.childis
already in sys.modules, so it’s used directly.

That’s the reason for the “Crazy side-effects!” comment. During the import process
for child, higher-level modules or packages may import it again, so child gets imported
even before the original request finishes.

The Behind-the-Scenes Hero: meta_path

When reviewing import_find and_load(), I noticed something interesting:
// file: Python/import.c

static PyObject *
import find and load(PyThreadState *tstate, PyObject *abs name)
{
// ... omitted ...
PyObject *sys path = PySys GetObject("path");
PyObject *sys meta path = PySys GetObject("meta path");
PyObject *sys path_hooks = PySys GetObject("path hooks");
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if (_PySys Audit(tstate, "import", "00000",
abs_name, Py None, sys path ? sys path : Py None,
sys meta path ? sys meta path : Py None,
sys_path_hooks ? sys path hooks : Py None) < 0) {
return NULL;

}
// ... omitted ...

sys.path is straightforward—a list that determines the search order for modules. But
whatis sys.meta_path? Let’s print it in the REPL:

>>> import sys

>>> sys.meta_path

[<class ' frozen importlib.BuiltinImporter'>,
<class ' frozen importlib.FrozenImporter'>,
<class ' frozen importlib external.PathFinder'>]

It’s a list, consisting of three classes: BuiltinImporter, FrozenImporter, and
PathFinder. The first two can be found in Lib/importlib/ bootstrap.py, while the last
oneisin Lib/importlib/ bootstrap external.py.

These Importer or Finder classes are responsible for importing modules. In brief,
BuiltinImporter handles built-in modules, FrozenImporter deals with “frozen
modules” (which are compiled into the interpreter and don’t require disk access—
resulting in faster startup, better performance, and enhanced security), and PathFinder
is the most complex. It manages searching for modules through the file system paths by
traversing each path in sys.path to look for matching modules.

All these classes implement a find_spec() class method. As seen previously in the
_find_and load_unlocked() function, there’s a segment like this:

# file: Lib/importlib/ bootstrap.py

def find and load unlocked(name, import ):
# ... omitted ...

spec = find spec(name, path)
# ... omitted ...
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Let’s check the implementation of find_spec():
# file: Lib/importlib/ bootstrap.py

def find spec(name, path, target=None):
meta_path = sys.meta path

# ... omitted ...

for finder in meta path:
with ImportLockContext():

try:
find_spec = finder.find_spec

except AttributeError:
continue

else:
spec = find spec(name, path, target)

# ... omitted ...

In summary, when using these Finder classes, Python iterates through sys.meta_
path in order, first using BuiltinImporter. If it fails, it tries FrozenImporter, and finally,
PathFinder.

Ifyou find these three built-in Finders insufficient, you can even create your own
custom Finder. For detailed specifications, consult the official documentation.

o The meta path: https://docs.python.org/3.12/reference/
import.html#the-meta-path

Summary

Tracing the source code revealed that Python’s module import mechanism is much more
complex than I imagined. The import process is completed through close cooperation
between C and Python: the efficiency of C paired with the flexibility of Python. Importing
involves module search, loading, initialization, and handling circular imports. The use of
the sys.modules dictionary as a cache ensures that importing the same module multiple
times doesn’t consume extra resources—Python simply fetches it from sys.modules.
Complex though it may be, the module import mechanism is quite fascinating to

explore...Well, at least I think so!
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CHAPTER 8

The Internal
Representation of Integers

In the world of Python, integers are among the most fundamental and frequently used
data types. Have you ever wondered what happens behind the scenes when you create
a number in Python, for example: n = 9527? In some programming languages, the size
of numbers can be limited by the operating system—for instance, 232 or 264. Exceeding
this limit can result in an “Overflow,” but why is Python capable of handling integers of
arbitrary size? And why do integers between -5 and 256 have certain special properties?
In this chapter, we’ll explore these questions in detail.

How Are Numbers Created?

Let’s start with a simple Python statement:
n = 9527
Let’s look at the corresponding bytecode:

1 2 LOAD_CONST 0 (9527)
4 STORE_NAME 0 (n)

It's quite straightforward. The LOAD_CONST instruction loads the constant 9527 onto
the stack, and the STORE_NAME instruction assigns it to the variable n. But how is the value
9527 actually created? If the bytecode execution only “loads” this constant, when exactly
is this constant created?

The bytecode process is divided into two phases: compilation and execution. During
the compilation phase, the function responsible for generating integers in Python is
PyLong_FromLong():
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// file: Objects/longobject.c

PyObject *
PyLong_FromLong(long ival)

{
PyLongObject *v;
unsigned long abs ival, t;
int ndigits;

// ... omitted ...

return (PyObject *)v;

This function converts an integer into a PyLongObject. We’ll delve into the details
of the function in a moment. Next, this object is inserted into the code object’s constant
table, co_consts:

// file: Python/compile.c

static Py ssize t
compiler_add const(PyObject *const cache, struct compiler unit *u,
PyObject *o)

{
assert(PyDict CheckExact(const cache));
PyObject *key = merge consts recursive(const cache, o0);
if (key == NULL) {
return ERROR;
}
Py ssize t arg = dict _add o(u->u_metadata.u_consts, key);
Py DECREF(key);
return arg;
}

Here, u->u_metadata.u_consts refers to co_consts, which is a tuple containing all
constants needed by the code object. This covers the compilation phase of the bytecode
process.
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Moving on to the execution phase, the compiled bytecode is executed by the virtual
machine (VM). Let’s see what the LOAD_CONST instruction does during execution:

// file: Python/bytecodes.c

inst(LOAD CONST, (-- value)) {
value = GETITEM(frame->f code->co consts, oparg);
Py INCREF(value);

Asyou can see, during execution, Python fetches the precompiled constant object
from the current Frame’s code object constant table, co_consts, rather than creating a
new one by calling PyLong_FromLong() again. This is much more efficient. Concepts like
Frame and Code Object will be explained in detail in later chapters. For now, you can
consider Frame as the current function’s execution environment and Code Object as the
function’s actual code.

Integer Objects

As mentioned earlier, the PyLong_FromLong() function creates a PyLongObject during
bytecode compilation and stores it in co_consts. So, what does a PyLongObject
look like?

// file: Include/cpython/longintrepr.h

struct longobject {
PyObject HEAD
_PyLongValue long_value;
b5

The structure is quite simple; it has only one member variable, long_value, which is
of type PylongValue:
// file: Include/cpython/longintrepr.h
typedef struct PylongValue {
uintptr t 1lv_tag; /* Number of digits, sign and flags */
digit ob digit[1];
} _PylLongValue;

75



CHAPTER 8  THE INTERNAL REPRESENTATION OF INTEGERS

The 1lv_tag field, as indicated by the comment “Number of digits, sign and flags,”
holds metadata such as the number of digits, the sign, and some additional information
about the integer. The ob_digit array stores the actual value of the integer. Although its
size is 1, there can be multiple digits required to represent large numbers.

On a 64-bit system, the structure of 1v_tag looks like this:

63 2 1 0
e ke e e e e P +---4---+
I DATA I T IS |
et T e T T +---4---+

In this diagram, S, T, and DATA denote the meaning of each bit. S indicates the sign
(0 for positive, 1 for negative), T is a flag indicating whether this is a “small integer,”
and DATA (the largest portion) stores the number of digits needed for the number. For
example, let’s consider the number 9527:

First, the S bit records the sign: 0 for positive, 1 for negative. So for 9527, the S bitis 0.

CPython has a concept called “small integers,” which will be discussed in detail later.
These are integers in the range from -5 to 256. If an integer falls within this range, the T
bit is 0; otherwise, it is set to 1. Although 9527 is not particularly large, it falls outside the
small integer range, so the T bitin its 1v_tagis setto 1.

The DATA part is more involved. In Python, a digit unit (as defined by PYLONG_
BITS_IN DIGIT in the source code) can hold 30 bits on a 64-bit system. The binary
representation of 9527 is 10010100110111, which occupies only 14 bits. Therefore, it
requires just one digit. The DATA section stores this value (number of digits required).
For 9527, it’s 1.

So, the 1v_tag for 9527 is:

63 2 1 0
et T ittt +---4---+
10000000000000000000000000000000000000000001 | 1 | O |
e L E e e e PR +---t---+

Removing the leading zeros gives you 110 in binary or 0x6 in hexadecimal. What
about the actual value of 9527? It’s stored in ob_digit[0] of PyLongValue, resulting in:

lv_tag: ox6
ob digit[0]: 9527
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If you understand this, you'll realize that any number up to 2230 - 1 can be
represented with a single digit.

Astronomical Numbers!

But what happens with even larger numbers? For example, 2 to the power of 50, which
is1,125,899,906,842,624, or a binary 1 followed by 49 zeros. Since each digit can only
store 30 bits, we need another digit to hold the remaining bits. Here, the DATA section in
1v_tag becomes 2 (binary = 10), indicating that two digits are needed:

63 2 1 0
R G PP PR +---t---+
10000000000000000000000000000000000000000010 | 1 | O |
R P PP PR +---+---+

So, the 1v_tag will be 1010, which is 0xA in hexadecimal. What about the ob_digit
part? 2750 in binary is 50 bits: ob_digit[0] takes the lower 30 zeros, and ob_digit[1]
holds the remaining bits (1 followed by 19 zeros).

So, for 2150, the PyLongValue looks like this:

lv_tag: oxA
ob digit[o] = 0
ob digit[1] = 524288

If you need three digits, then the DATA part of 1v_tag will be 3 (binary = 11), and
ob_digit will contain three elements, and so on:

63 2 1 0
R G PP PR +---t---+
10000000000000000000000000000000000000000011 | 1 | O |
R P PP PR +---+---+

By adding more digits, you can represent even larger numbers. This is why Python
can handle arbitrarily large integers—as long as your hardware has enough memory, the
size of integers you can create is practically unbounded. This is how Python performs
calculations with extremely large numbers.
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While 21450 is a huge number mathematically, in Python’s internal representation,
it’s split into two much smaller numbers (0 and 524288). This approach allows Python to
handle very large integers efficiently and bypasses the limitations typical of native CPU
integer types like 2732 or 2/64.

With this design, Python’s integer limits are theoretically enormous. If you set all bits
in the DATA section to 1, you could have 2762 - 1 digits, and each digit can hold integers
up to 21730 - 1. Multiplying these two numbers gives you a value so large that, with
today’s hardware, there simply isn’t enough memory available to store such a number.

In other words, Python’s integers can be extremely large. For example, with 16 GB of
memory, you could theoretically create a number with around one billion digits—such
numbers are rarely encountered in everyday practice.

Small Integers

Integers are extremely common in Python programs. If a new integer object had to be
created each time an integer was used, it could result in unnecessary memory waste.
To address this, Python pre-allocates certain integer objects so that when you need
them, you can just reuse them rather than creating new ones. Of course, since there are
infinitely many integers, Python can'’t pre-create all of them—only the most commonly
used ones are pre-allocated as a performance optimization.

Specifically, in Python, integers from -5 to 256 are particularly common. These are
pre-allocated and compiled directly into the Python interpreter itself, so when you use
any of these numbers, you'll actually be using the same object each time. You can verify

this using the is keyword:
>>> a = 256

>>> b = 256

>»> ais b

True

>>> ¢ = 257

>>> d = 257

>»> cis d

False
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How is this achieved? If we look back at the PyLong_FromLong() function mentioned
earlier, we see the following:

// file: Objects/longobject.c

if (IS SMALL INT(ival)) {
return get small int((sdigit)ival);

The IS_SMALL_INT() macro checks whether a value is a small integer. Its definition is
as follows:

// file: Objects/longobject.c

#define IS SMALL INT(ival) (- _PY NSMALLNEGINTS <= (ival) && (ival) < PY_
NSMALLPOSINTS)

What are PY NSMALLNEGINTS and PY NSMALLPOSINTS?
// file: Include/internal/pycore global objects.h

#idefine PY NSMALLPOSINTS 257
#idefine PY NSMALLNEGINTS 5

Thatis, 5 and 257. So the IS_SMALL_INT macro checks for integers in the range -5 to
256. If the value falls in this range, it calls the get_small int() function:

// file: Objects/longobject.c

static PyObject *
get small int(sdigit ival)
{
assert(IS SMALL INT(ival));

return (PyObject *)& Pylong SMALL INTS[ PY NSMALLNEGINTS + ivall;
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In the file defining Python’s global objects, you'll see something like this:
// file: Include/internal/pycore global objects.h

struct Py static objects {
struct {

/* Small integers are preallocated in this array so that they
* can be shared.
* The integers that are preallocated are those in the range
* - PY NSMALLNEGINTS (inclusive) to _PY NSMALLPOSINTS (exclusive).
*/

PyLongObject small ints[ PY NSMALLNEGINTS + PY NSMALLPOSINTS];

// ... omitted ...
} singletons;

};

The small ints array is a member of static_objects. These objects are compiled
and statically included in CPython itself, meaning that when you start and run Python,
these integer objects have already been created and are ready to use.
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Floating Point Numbers
in CPython

What Is a “Floating Point Number”?

First, have you ever wondered why what we used to call “decimals” in math class are
called “floating point numbers” in programming? What's floating about them? Will they
float if you toss them in water?

Simply put, computers cannot directly handle base-10 decimals (like 3.14 or 0.001)
as we see them in daily life. Instead, they need a special way to represent these numbers.
The structure of floating point numbers is similar to scientific notation. For example,
3.14 can be rewritten as 3.14 x 100, and 0.001 as 1 x 10-3. In computers, these values are
represented using a “mantissa” and an “exponent”.

Imagine that if we were to represent numbers like 0.0000123 or 123,000,000,000 with
a fixed decimal point, the larger or smaller the number, the more zeros we would need,
which could be wasteful. Using a method similar to scientific notation, they become 1.23
x 10-5 and 1.23 x 1011, without the need for all those zeros.

So, the “floating” in “floating point” refers to the fact that the decimal point can freely
move and is not fixed in one spot. This design allows computers to efficiently represent
very large or very small decimal numbers, preventing overflow issues for extremely large
or small values. The downside, however, is that there may be precision issues.
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The Structure of Floating Point Numbers

In Python, a floating point number is also an object, and its structure is as follows:
// file: Include/cpython/floatobject.h

typedef struct {
PyObject HEAD
double ob_fval;
} PyFloatObject;

Compared to the integer PyLongObject discussed in the previous chapter, the
structure of PyFloatObject is simpler. It only has one member variable of type double
called ob_fval to store the value of the floating point number. Some programming
languages, like C, distinguish between 32-bit single precision (float) and 64-bit double
precision (double) floating point numbers. However, as seen in the CPython source
code, Python’s floating point numbers are implemented directly using C’s double.

Whenever you execute a = 3.14, CPython creates a new PyFloatObject. This is
handled by the PyFloat FromDouble() function defined in Objects/floatobject.c.
I've omitted some less relevant conditional compilation and { } blocks for clarity. The
essential code looks like this:

// file: Objects/floatobject.c

PyObject *
PyFloat FromDouble(double fval)
{

PyFloatObject *op;

op = PyObject Malloc(sizeof(PyFloatObject));
if (lop) {
return PyErr NoMemory();

}

_PyObject Init((PyObject*)op, &PyFloat Type);
op->ob_fval = fval;
return (PyObject *) op;
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The process is straightforward: first, it calls PyObject Malloc() to allocate memory,
then initializes the object with PyObject Init(), and finally assigns the input fval to
the member variable ob_fval.

Actually, it’s not quite that simple—I've omitted some code to make it look cleaner
here. We'll revisit those additional details when discussing the performance aspects of
floating point numbers later.

Because CPython'’s floating point numbers are implemented using C’s double, the
design and computation results of Python’s floats align closely with those in C.

About Floating Point Numbers

As CPython’s floating point type corresponds to C’s double, it is also implemented
according to the IEEE 754 standard. IEEE 754 defines that a double precision floating
point number occupies 64 bits, with the following layout:

63 62 52 0
s SRR R e L e PP +
['S | E I M I
Rt EEEE LR R e +

o IEEE 754: https://en.wikipedia.org/wiki/IEEE 754
Here is what the letters stand for:

e Sisthe sign bit, occupying 1 bit: 0 for positive, 1 for negative.

o Eisthe exponent, occupying 11 bits.

e Mis the mantissa (also known as significant), occupying 52 bits.
For example, the binary representation of 3.14 is:

11.0010001111010111000010100011110101...

Although this is actually a repeating binary decimal, with the infinite part truncated
due to limited storage, some inaccuracy is expected. Using a scientific notation-like
format, we move the decimal point to the left by one position, resulting in:

1.10010001111010111000010100011110101... x 2"1
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A brief note about how the exponent E is calculated: this is a bit more complex. IEEE
754 uses a “bias” for the exponent; for double, the bias is 210 - 1, or 1,023. As we've just
seen, 3.14 in binary is expressed as 1.100100011... x 2"1. Here, the exponent is 1, so
you add the bias to get 1,024, which is 10000000000 in binary. The bias technique allows
both positive and negative exponents to be represented more easily.

So, 3.14 in IEEE 754 double precision format would be:

e S:0,since 3.14 is positive.

e E:10000000000, as calculated above.

e M: The sequence to the right of the decimal in 1.100100011. ...
So 3.14 in IEEE 754 looks like:

0 10000000000 1001000111101011100001010001111010111000010100011110

From this, you can see that the M (mantissa) bit section cannot store all the digits—
hence the common problem of floating point inaccuracy. Since C’s double strictly
follows IEEE 754, and CPython’s floating point is implemented using C’s double, the
same imprecise behavior is to be expected.

Floating Point Arithmetic
Let’s take another look at the definition of PyFloat_Type:
// file: Objects/floatobject.c

PyTypeObject PyFloat Type = {
PyVarObject HEAD INIT(&PyType Type, 0)

"float",

// ... omitted ...

8float _as number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp _clear */

0, /* tp_as_mapping */

// ... omitted ...
b
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Previously, we discussed the tp_as_member variables. Arithmetic operations, such

as addition, rely on the tp_as_number field, which is set to float_as_number here. Let’s

follow float_as_number:

// file: Objects/floatobject.c

static PyNumberMethods float as number = {

float_add, /*
float_sub, /*
float mul, /*
float rem, /*
float _divmod, /*
float_pow, /*
(unaryfunc)float neg, /*
float float, /*

(unaryfunc)float_abs, /*
(inquiry)float bool, /*
0, /*
// ... omitted ...

};

From the function names, it’s clear that these operations correspond to arithmetic

nb_add */
nb_subtract */
nb_multiply */
nb_remainder */
nb_divmod */
nb_power */
nb_negative */
nb_positive */
nb_absolute */
nb_bool */
nb_invert */

functions. Let’s take a closer look at addition (float_add) and subtraction (float_sub):

// file: Objects/floatobject.c

static PyObject *

float_add(PyObject *v, PyObject *w)

{
double a,b;
CONVERT TO DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
a=a+b;
return PyFloat FromDouble(a);
}
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static PyObject *
float_sub(PyObject *v, PyObject *w)

{
double a,b;
CONVERT TO DOUBLE(v, a);
CONVERT _TO DOUBLE(w, b);
a=a- b;
return PyFloat FromDouble(a);
}

It’s quite straightforward. Both values are converted to double, the arithmetic is
performed, and the result is converted back into a PyFloatObject.

Infinity!

Both positive and negative infinity are represented as special floating point values
in Python. When the result of a floating point operation exceeds the maximum
representable value, it will be set to infinity (positive or negative as appropriate), rather
than causing an overflow.

Since Python’s floating point numbers are C doubles under the hood, infinity in
Python is identical to infinity in C. Here’s a simple C program to illustrate this:

#include <stdio.h»

int main() {
// Pick numbers close to the maximum value of double
double positive float

1e308; // Positive max value
-1e308; // Negative max value

double negative float

// Intentionally go out of range by multiplying by 10
double resultl = positive float * 10;
double result2 = negative float * 10;

printf("Result: %f\n", result1);
printf("Result: %f\n", result2);
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The results displayed will be inf and -inf, respectively. This is the behavior of
C’s double when exceeding representable limits, so it’s no surprise to see the same
in Python.

Not a Number!

NaN (Not a Number) is a special floating point value as defined by IEEE 754, representing
avalue that is not a valid number. CPython defines a macro to check for NaN values:

// file: Include/pymath.h
#tdefine Py IS NAN(X) isnan(X)

If you look deeper, you'll see that isnan() is simply a function or macro provided by
C itself. In other words, Python just calls C’s native isnan check.
If we look further at C’s isnan macro:

#define isnan(x) \
( sizeof(x) == sizeof(float) ?  inline isnanf((float)(x)) \
: sizeof(x) == sizeof(double) ?  inline isnand((double)(x)) \

: __inline isnanl((long double)(x)))

It chooses which function to use based on whether the value is a float, double, or
long double. Focusing on the double version:

__header_always_inline int _ inline isnand(double _ x) {
return _x !=  x;

It simply returns the result of comparing the value to itself. According to IEEE 754,
NaN is not equal to any value, including itself. Therefore, the expression x != xis only
true when x is NaN.
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Comparing Floating Point Numbers

Compared to basic arithmetic operations, comparing floating point numbers is far more
complicated. In fact, the comment in the code says that floating point comparisons are
pretty much a nightmare:

// file: Objects/floatobject.c

/* Comparison is pretty much a nightmare. When comparing float to float,
* we do it as straightforwardly (and long-windedly) as conceivable, so
* that, e.q., Python x == y delivers the same result as the platform
* C x ==y when x and/or y is a NaN.
* When mixing float with an integer type, there's no good *uniform* approach.
* Converting the double to an integer obviously doesn't work, since we
* may lose info from fractional bits. Converting the integer to a double
* also has two failure modes: (1) an int may trigger overflow (too
* large to fit in the dynamic range of a C double); (2) even a C long may have
* more bits than fit in a C double (e.g., on a 64-bit box long may have
* 63 bits of precision, but a C double probably has only 53), and then
* we can falsely claim equality when low-order integer bits are lost by
* coercion to double. So this part is painful too.

*/

Indeed, comparing floating point numbers is tricky enough, but things get even more
complicated when comparing floats and integers or when dealing with special values
like NaN or infinity. Let’s take a look at just how complex this can get. As we have learned,
comparison logic is implemented in the tp_richcompare member:

// file: Objects/floatobject.c

static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)

{
// ... omitted ...

This function is around 170 lines long and filled with if and else if statements,
including logic for handling NaN, which explains the “nightmare” comment.
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Floating Point Performance

At the beginning, when discussing how floating point numbers are created—specifically
the PyFloat FromDouble() function—I initially omitted some conditional code, making
it look like this:

// file: Objects/floatobject.c

PyObject *
PyFloat FromDouble(double fval)
{
PyFloatObject *op;
#if PyFloat MAXFREELIST > 0
struct Py float state *state = get float state();
op = state->free list;
if (op != NULL) {
state->free list = (PyFloatObject *) Py TYPE(op);
state->numfree--;
OBJECT STAT INC(from freelist);
}
else
#endif

// ... omitted ...

If you look for the definition of PyFloat MAXFREELIST, you'll find it defaults to 100.
This feature is designed to optimize performance. When a floating point object is no
longer in use, its memory is not immediately freed; instead, it is put into a “free list” for
reuse. Here is the structure of this list:

// file: Include/internal/pycore floatobject.h

struct Py float state {
#if PyFloat MAXFREELIST > 0
/* Special free list
free list is a singly-linked list of available PyFloatObjects,
linked via abuse of their ob_type members. */
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int numfree;
PyFloatObject *free list;
#endif
};

This simple structure uses numfree to track how many slots are available and free_
list to point to the list of reusable floating point objects. According to the comment,
it is a singly linked list, “abusing” the ob_type member to chain the objects together.
(That “abuse” isn’t my term—it’s right in the comment!) In practice, the linked list looks
like this:

Finally, the last pointer is NULL, indicating the end of the list.
From the code in PyFloat_FromDouble(), you can see that Python checks the free
list first when creating a floating point object. If an item is available, this line is key:

state->free list = (PyFloatObject *) Py TYPE(op);

Syntactically, this seems to assign a new PyFloatObject to free list after
converting with the Py TYPE() macro, butin fact, Py_TYPE() retrieves the ob_type of
the object:

// file: Include/object.h

static inline PyTypeObject* Py TYPE(PyObject *ob) {
return ob->ob_type;

This function simply retrieves the ob_type from the object, so this code is not
creating a new object—in effect, it’s advancing the free_list pointer to the next item in
the linked list (“popping” the list), reusing memory that’s already been allocated. This
technique prevents memory fragmentation and improves efficiency by recycling equally
sized memory blocks.

This is quite clever! Honestly, I never would have thought to use the type pointer like
this. It’s truly an ingenious design!
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Inside the String Object:
Part 1

In most programming languages, strings and numbers are among the most frequently
used data types. Strings are primarily used to represent text data, but have you ever
wondered what actually happens behind the scenes when you write a simple statement
in Python like message = "Hello, World!"?

Creating a String

Let’s start with the basics:
message = "Hello, World!"

This line of code is very common in Python. Its purpose is to create a string and
assign it to the variable message. Let’s take a look at what the bytecode for this line
looks like:

1 2 LOAD CONST 0 ('Hello, World!")
4 STORE_NAME 0 (message)

Once again, it uses the LOAD_CONST instruction to load a constant, which means that
this string is already compiled into the bytecode before the bytecode even runs. When
you create a string with a literal (String Literal) like this, the compiler embeds it directly
into the bytecode. As for how bytecode is generated, we will cover that in detail in a later
chapter. For now, let’s see how a string object is created in CPython.
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String Objects

In Python 3, strings are Unicode by default, and CPython uses the PyUnicode New()
function to create string objects:

// file: Objects/unicodeobject.c

PyObject *
PyUnicode New(Py ssize t size, Py UCS4 maxchar)

{
// ... omitted ...

This function has a fair number of lines, so we’ll go through it step by step. The first
thing it does is check if it is an empty string:

// file: Objects/unicodeobject.c

/* Optimization for empty strings */
if (size == 0) {
return unicode new _empty();

There is a specific optimization for empty strings! This makes sense, since empty
strings are used quite frequently. Let’s see how this is implemented:

// file: Objects/unicodeobject.c

static inline PyObject* unicode new empty(void)
{
PyObject *empty = unicode get empty();
return Py NewRef(empty);

In other words, there is only one instance of the empty string in CPython, and it is
compiled directly into the Python interpreter. Every time an empty string is needed,
the same empty string object is used, rather than creating a new instance. This not
only saves memory but also avoids unnecessary operations in the PyUnicode New()
function. Next, the function determines which type of string object to create based on
the encoding of the characters:
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// file: Objects/unicodeobject.c

if (maxchar < 128) {
kind = PyUnicode 1BYTE_KIND;
char_size = 1;
is _ascii = 1;
struct size = sizeof(PyASCIIObject);
}
else if (maxchar < 256) {
kind = PyUnicode 1BYTE_KIND;
char_size = 1;
}
else if (maxchar < 65536) {
kind = PyUnicode 2BYTE_KIND;
char_size = 2;

}
else {
if (maxchar > MAX UNICODE) {
PyErr SetString(PyExc_SystemError,
"invalid maximum character passed to
PyUnicode New");
return NULL;
}
kind = PyUnicode 4BYTE_KIND;
char_size = 4;
}

Here, the value of maxchar determines which type of string object to create. CPython
defines three types of string objects: PyASCIIObject is used for pure ASCII strings, where
each character uses one byte. PyCompactUnicodeObject is for small Unicode strings,
using two bytes per character. And PyUnicodeObject is for large Unicode strings, using
four bytes per character. That is, Python chooses the most suitable type of string object
for the actual content, in order to minimize unnecessary memory usage.
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If you use Chinese characters or emojis, it makes sense to represent them with
Unicode. But for English letters and digits, ASCII suffices. The definitions of these three
string structures are also interesting—a closer look shows that they are closely related:

// file: Include/cpython/unicodeobject.h

typedef struct {
PyObject HEAD
Py _ssize_t length;
Py _hash_t hash;
struct {

/* Number of code points in the string */
/* Hash value; -1 if not set */

unsigned int interned:2;

unsigned int kind:3;

unsigned int compact:1;

unsigned int ascii:1;

unsigned int statically allocated:1;

unsigned int :24;
} state;
} PyASCIIObject;

typedef struct {
PyASCIIObject base;
Py ssize t utf8 length;

char *utfs;
} PyCompactUnicodeObject;

typedef struct {

/* Number of bytes in utf8, excluding the
* terminating \o. */
/* UTF-8 representation (null-terminated) */

PyCompactUnicodeObject base;

union {
void *any;
Py UCS1 *1atini;
Py UCS2 *ucs2;
Py _UCS4 *ucs4;
} data;
} PyUnicodeObject;
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From the source code, it’s not hard to see that PyASCIIObject is the basic
structure, PyCompactUnicodeObject builds upon it by adding a few members, and
PyUnicodeObject extends PyCompactUnicodeObject further.

The Fundamental String Structure

Since PyASCIIObject is the foundational structure, let’s take a closer look at its members:

// file: Include/cpython/unicodeobject.h

typedef struct {

PyObject_HEAD

Py ssize t length; /* Number of code points in the string */
Py hash_t hash; /* Hash value; -1 if not set */
struct {

unsigned int interned:2;

unsigned int kind:3;

unsigned int compact:1;

unsigned int ascii:1;

unsigned int statically allocated:1;

unsigned int :24;

} state;
} PyASCIIObject;

o PyObject HEAD: A macro required by every object, which we won’t

discuss here.

o length: As you might guess, this stores the number of characters in

the string. It is set when the string object is created, so retrieving the

string’s length is fast and does not require recalculating every time.

e hash: Stores the hash value of the string. If it is -1, it means the hash

hasn’t been computed yet.

o The state struct contains:

¢ interned: Indicates whether the string is “interned” (stored in

an internal pool for reuse), so it doesn’t have to be created again

every time.
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e kind: Indicates the string’s encoding type, distinguishing
between PyASCIIObject, PyCompactUnicodeObject, and
PyUnicodeObject.

o compact: Indicates whether the string data is stored directly after
the string object in memory, rather than as a separate allocation.

This improves performance.
e ascii:Indicates whether it is a pure ASCII string.

o statically allocated: Indicates whether the string is statically
allocated, in which case it isn’t managed by the garbage collector.

o Theremaining 24 bits are reserved for future extensions, allowing
new flags to be added without changing the size of the structure.

To elaborate on compact, imagine you have a box of clothes. You might keep clothing
labels separate from the clothes, but if you use a “compact” method, the label is sewn
directly onto the garment—saving space and making them easier to find.

Of course, this design isn’t without drawbacks. For example, if you want to modify
the string, you'll need to reallocate memory, which can be slower. However, since Python
strings are immutable by design, this isn’t a problem.

String Operations
Encoding Conversion

Python chooses which string object type to use based on the string’s contents. Suppose
you add an emoji (), Unicode code point = U+1F60A) to an ASCII string:

"Hello, world!"
message + "©"

message
message

What happens here? Let’s walk through it. Strings are of type PyUnicode Type. As
discussed in the earlier section on the PyType _Type structure, there are three members
starting with tp_as . One of them, tp_as_sequence, defines how the object behaves as
a sequence, handling things like indexing, slicing, and concatenation. Here, joining two
strings makes use of the sq_concat function pointer from that member:
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// file: Objects/unicodeobject.c

PyObject *
PyUnicode Concat(PyObject *left, PyObject *right)
{

PyObject *result;

// ... omitted ...

maxchar = PyUnicode MAX CHAR VALUE(left);
maxchar2 = PyUnicode MAX_CHAR VALUE(right);
maxchar = Py MAX(maxchar, maxchar2);

/* Concat the two Unicode strings */
result = PyUnicode New(new len, maxchar);
if (result == NULL)
return NULL;
_PyUnicode FastCopyCharacters(result, 0, left, 0, left len);
_PyUnicode FastCopyCharacters(result, left len, right, 0, right len);
assert(_PyUnicode CheckConsistency(result, 1));
return result;

Here we see that the maxchar of both strings is checked and the larger value is passed
to PyUnicode New() to create the new string object. This function then determines
which string object type to use based on the content. In this case, maxchar is U+1F60A,
which is greater than 65536, so Python uses PyUnicodeObject to create the string.

Python strings are immutable, so message is not changed in place; instead, a
brand new string object is created and assigned to message. When Python detects
that the characters in the new string exceed the capabilities of the current structure, it
automatically switches from using PyASCIIObject to PyUnicodeObject. We can write a
small Python script to verify this:

import sys

def string info(s):
print(f"Length: {len(s)}")
print(f"Size: {sys.getsizeof(s)} bytes")
print(f"Is ASCII: {s.isascii()}")
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message = "Hello World!"
string info(message)

message = message + "©"
string info(message)

Output:

Length: 12
Size: 53 bytes
Is ASCII: True

Length: 13
Size: 112 bytes
Is ASCII: False

As you can see, by adding just one emoji, the size of the string jumps from 53 bytes to
112 bytes—and the ascii member in state is now 0.

Strings Are Immutable

Python strings are immutable, meaning you can read string elements, but you cannot
modify them:

message = "Hello, World!"
print(message[0]) # prints "H"
message[0] = "h" # This will raise an error!

This is implemented quite simply. When accessing or assigning by square brackets
(i.e., via indexing or slicing), Python first looks for themp_subscript member in the
tp_as_mapping structure and, if not present, then checks tp_as_sequence.

// file: Objects/unicodeobject.c

static PyObject*
unicode subscript(PyObject* self, PyObject* item)
{
if (_PyIndex Check(item)) {
// ... omitted ...
return unicode getitem(self, i);
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} else if (PySlice Check(item)) {
// ... omitted ...
} else {
PyErr Format(PyExc TypeError, "string indices must be integers,
not '%.200s'", Py TYPE(item)->tp name);
return NULL;

Here, the function checks whether itemis an integer or a slice. If it’s an integer,
it calls unicode_getitem().Ifit’s a slice, it creates a new string object for the slice.
Reading is fine, but for assignment (modifying elements), Python checks themp_ass_
subscript member:

// file: Objects/unicodeobject.c

static PyMappingMethods unicode as mapping = {

(lenfunc)unicode length, /* mp_length */
(binaryfunc)unicode subscript, /* mp subscript */
(objobjargproc)o, /* mp_ass_subscript */

};

You can see thatmp_ass_subscript is set to 0, which means this function is not
implemented. As a result, attempting to use integer or slice indices to modify a string will

result in an error message:
TypeError: 'str' object does not support item assignment

In summary, regarding string modification:

e Any operation that looks like it modifies a string—such as
concatenation or changing case—returns a brand new string object.

e Strings are immutable simply because they do not provide any
function for direct modification.

That’s all there is to it.
More about string formatting, slicing, and memory-saving techniques like string
interning will be covered in the next part.
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String Operations
Copying Strings

In the previous chapter, we introduced this pattern:

message
message

"Hello, world!"
message + "©"

Although this feels like a simple operation, similartoa = a + 1, in reality, this
process creates a new string object. At the end of the function, it calls a method to
concatenate the strings:

// file: Objects/unicodeobject.c

PyObject *
PyUnicode Concat(PyObject *left, PyObject *right)
{

PyObject *result;

// ... omitted ...

result = PyUnicode New(new_len, maxchar);
if (result == NULL)
return NULL;
_PyUnicode_FastCopyCharacters(result, 0, left, 0, left len);
_PyUnicode FastCopyCharacters(result, left len, right, 0, right len);

101
© Chien-Lung Kao 2025

C. Kao, CPython, https://doi.org/10.1007/979-8-8688-1769-4_11


https://doi.org/10.1007/979-8-8688-1769-4_11#DOI

CHAPTER 11  INSIDE THE STRING OBJECT: PART 2

assert(_PyUnicode CheckConsistency(result, 1));
return result;

Here, you can see that two copy operations are performed at the end, copying
the final result into the result object. Notably, the function name PyUnicode
FastCopyCharacters includes the word Fast. Let’s take a look at how fast it really is:

// file: Objects/unicodeobject.c

static int

_copy_characters(PyObject *to, Py ssize t to start,
PyObject *from, Py ssize t from start,
Py ssize t how_many, int check maxchar)

// ... omitted ...

This function has several parameters. The meanings of to and from are
straightforward—they represent the objects to copy from and to. to_start and from_
start indicate the starting positions in the destination and source objects, respectively.
how_many specifies how many characters to copy, while check_maxchar determines
whether to check the maximum character value.

Let’s look further down:

// file: Objects/unicodeobject.c

from kind = PyUnicode KIND(from);
from data = PyUnicode DATA(from);
to _kind = PyUnicode KIND(to);

to data = PyUnicode DATA(to);

if (from kind == to_kind) {
if (check maxchar
88 !PyUnicode IS ASCII(from) && PyUnicode IS ASCII(to))

Py_UCS4 max_char;
max_char = ucs1lib find max_char(from data,
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(const Py UCS1*)from data +
how_many);
if (max_char >= 128)
return -1;
}
memcpy((char*)to data + to_kind * to_start,
(const char*)from data + from kind * from start,
to _kind * how_many);
}
else if (from _kind == PyUnicode 1BYTE_KIND
8& to_kind == PyUnicode 2BYTE KIND)

// ... omitted ...

The PyUnicode KIND macro simply checks the kind property inside the string
object’s state structure. If the kind property of both string objects is the same, the
function uses the memcpy () function to copy the memory directly. This memcpy ()
operates at the memory level, without any extra checks or processing; it simply copies
data from one memory region to another, which is much faster than copying characters
one by one.

If the encodings are the same, the operation is a memory-level copy. But what if the
string objects have different encodings? Next, you'll see a series of else if conditions:

// file: Objects/unicodeobject.c

if (from kind == to_kind) {
// Fast copy

}
else if (from kind == PyUnicode 1BYTE_KIND
88 to_kind == PyUnicode 2BYTE KIND)

// ... omitted ...

}
else if (from kind == PyUnicode 1BYTE_KIND
8& to_kind == PyUnicode 4BYTE_KIND)
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{
// ... omitted ...

}
else if (from _kind == PyUnicode 2BYTE_KIND
8& to_kind == PyUnicode 4BYTE_KIND)

{

// ... omitted ...
}
else
{

// ... omitted ...
}

This section does the heavy lifting. Whenever the encodings differ, the string is
first converted to the matching encoding before being copied character by character.
Naturally, this isn’t as fast as memcpy (). In summary, if two string objects have the same
encoding, concatenation operates very quickly.

String Slicing
In Python, you can extract a portion of a string using the slice operation. For example:

text = "Hello, World!"
print(text[0:5]) # Output: "Hello"

How does this work? Previously, we introduced that at the top level, the PyType Type
structure contains three members with names starting with tp_as_. When using square
brackets ([ ]) for operations, Python first tries to access themp_subscript member inside
tp_as_mapping.

// file: Objects/unicodeobject.c

static PyObject*
unicode subscript(PyObject* self, PyObject* item)
{
if (_PyIndex Check(item)) {
Py ssize t i = PyNumber AsSsize t(item, PyExc_IndexError);
// ... omitted ...

return unicode getitem(self, i);
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} else if (PySlice Check(item)) {
Py ssize t start, stop, step, slicelength, i;
// ... omitted ...

From here, you can see that if the incoming item is a number, the function calls
unicode getitem() to handle single-character access. If the incoming itemis a slice
object, it proceeds with the slice operation.

What is a slice object? It’s actually a type called PySlice Type:

// file: Objects/sliceobject.c

PyTypeObject PySlice Type = {
PyVarObject HEAD INIT(&PyType Type, 0)

"slice", /* Name of this type */
sizeof (PySliceObject), /* Basic object size */
0, /* Item size for varobject */

// ... omitted ...
(destructor)slice dealloc, /* tp dealloc */

0, /* tp _iternext */
slice methods, /* tp_methods */
slice members, /* tp_members */
0, /* tp init */

0, /* tp_alloc */
slice new, /* tp_new */

};

Compared to numbers or strings, the slice type is relatively simple. Slice objects in
Python are used like this:

reverse = slice(None, None, -1)
all = slice(None, None, None)
last_five = slice(-5, None)

message = "hellokitty"

print(message[reverse]) # Output: yttikolleh
print(message[all]) # Output: hellokitty
print(message[last five]) # Output: kitty
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Returning to the unicode_subscript() function, let’s look further:
// file: Objects/sliceobject.c

slicelength = PySlice AdjustIndices(PyUnicode GET LENGTH(self),
&start, &stop, step);

if (slicelength <= 0) {

_Py_RETURN_UNICODE_EMPTY();
} else if (start == 0 && step == 1 &&

slicelength == PyUnicode GET_LENGTH(self)) {

return unicode_result unchanged(self);
} else if (step == 1) {

return PyUnicode Substring(self, start, start + slicelength);

The PySlice AdjustIndices() function calculates the length of the slice. If the
length is less than or equal to 0, it returns an empty string. If the slice spans the entire
original string, it returns the original string directly. The slicing syntax in Python is
similar to indexing. Both use square brackets, but the slice syntax has up to three fields
separated by colons (:): “start position’, “stop position’; and “step”. Each field is optional.

In fact, calculating the slice length can get a bit complicated, which is why the

PySlice AdjustIndices() function contains this comment:
// file: Objects/sliceobject.c

Py ssize t
PySlice AdjustIndices(Py ssize t length,
Py ssize t *start, Py ssize t *stop, Py ssize t step)

{
/* this is harder to get right than you might think */
assert(step != 0);
assert(step >= -PY SSIZE T MAX);
// ... omitted ...
}

Comments nowadays certainly speak their mind!
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Performance
String Interning

String interning is one of Python’s memory management techniques for strings. By
storing strings that meet certain criteria in the “string pool,” Python ensures that strings
with identical contents share the same memory. This not only saves memory space but
also improves performance.

As seen in the state structure of PyASCIIObject, there is an interned property that
marks whether the string has been interned:

// file: Include/cpython/unicodeobject.h

typedef struct {
PyObject HEAD

Py ssize t length; /* Number of code points in the string */
Py hash t hash; /* Hash value; -1 if not set */
struct {

unsigned int interned:2;
unsigned int kind:3;
unsigned int compact:1;
unsigned int ascii:1;
unsigned int statically allocated:1;
unsigned int :24;
} state;
} PyASCIIObject;

The interned field can have several states:
// file: Include/cpython/unicodeobject.h

#define SSTATE _NOT _INTERNED 0

#fdefine SSTATE INTERNED MORTAL 1

#define SSTATE INTERNED IMMORTAL 2
#define SSTATE INTERNED IMMORTAL STATIC 3
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Descriptions:

o SSTATE_NOT_INTERNED: The string hasn’t been interned yet. This is
the default state for most dynamically created strings.

o SSTATE_INTERNED MORTAL: The string has been interned, but will be
garbage collected if no objects reference it (i.e., reference count drops
to 0). For example, strings manually interned in Python code with
sys.intern() fall into this category.

o SSTATE_INTERNED_IMMORTAL: The string has been interned and
will not be collected by the garbage collector; as long as Python is
running, it stays alive. Python keywords such as “def’, “class’, and “if”
are examples.

o SSTATE_INTERNED IMMORTAL_STATIC: The stringis interned and also
statically allocated, meaning it’s created at Python startup and never
freed or created again. This is used for extremely common strings,
such as the empty string "", or single ASCII characters like "a" or "A".

# file: Tools/build/generate global objects.py

def main() -> None:
identifiers, strings = get identifiers and strings()

generate global strings(identifiers, strings)

generated immortal objects = generate runtime_init(identifiers,
strings)

generate static_strings initializer(identifiers, strings)
generate_global object finalizers(generated immortal objects)

if _name_ == "' main_':
main()

From the function names in this Python script, you can infer that it generates global
or identifier strings, including some of the “immortal” objects we mentioned earlier.
Running this script writes to files such as Include/internal/pycore unicodeobject_
generated.h and Include/internal/pycore runtime init generated.h, and these
are compiled directly into the Python interpreter during the build process. If you're
interested, you can take a look at these files:
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// file: Include/internal/pycore runtime init generated.h

#tdefine Py small ints INIT { \
_PylLong DIGIT INIT(-5), \
_PyLong DIGIT INIT(-4), \
_PylLong DIGIT INIT(-3), \
// ... omitted ...
_PyLong DIGIT INIT(255), \
_Pylong DIGIT INIT(256), \

}

#define Py str ascii INIT { \
_PyASCIIObject INIT("\x00"), \
_PyASCIIObject INIT("\x01"), \
// ... omitted ...
_PyASCIIObject INIT("\x04"), \
_PyASCIIObject INIT("\x7f"), \

You'll find that not only are ASCII characters compiled in, but even the “small
integers” (from -5 to 256) we introduced earlier are included here.
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What Happens When
Python Starts

Let’s say you wrote a Python program like this:
# file: hello.py

def greeting(name):
return f"Hello, {name}!"

print(greeting("Kitty"))

When you enter the command python hello.py in your terminal, you happily see
“Hello Kitty” printed out. But do you know what the Python interpreter actually does
behind the scenes? Or if you want to try tracing CPython’s source code, where should
you start? The built-in Python debugger pdb can set breakpoints or step through your
Python code line by line. However, if you want to trace the interpreter itself, pdb won't
help—you’ll need a debugger designed for C programs.

Using a Debugger

The C language debuggers most commonly used in the industry are GDB and

LLDB. Their functionality and commands are quite similar, but since my environment
is macOS, LLDB is a bit more straightforward for me. I'll use it as an example here.
Normally, to run your program, you'd execute:

$ ./python.exe hello.py
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Here, python.exe is my self-compiled CPython interpreter. To have LLDB help me
run this command, I simply prefix it with 11db:

$ 11db ./python.exe hello.py

(11db) target create "./python.exe"

Current executable set to '/Users/kaochenlong/sources/python/cpython/
python.exe' (armé4).

(11db) settings set -- target.run-args "hello.py"

(11db) breakpoint set --name main

Breakpoint 1: 13 locations.

(11db)

Here, the command breakpoint set --name main sets a breakpoint at the main
function, which is the entry point of the entire program. This allows us to halt execution
just as the program starts and step through its operation. If you think this command is a
bit verbose, you can simply write b main for the same effect.

Once the breakpoint is set, you can begin execution.

Program Entry Point

(11db) run

Process 77203 launched: '/Users/kaochenlong/sources/python/cpython/python.

exe' (armé4)

Process 77203 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
frame #0: 0x0000000100003d1c python.exe main(argc=2,
argv=0x000000016fdfe128) at python.c:15:12 [opt]

12 int
13 main(int argc, char **argv)
14 A
-> 15 return Py BytesMain(argc, argv);
16 }
17  #endif

Target 0: (python.exe) stopped.

warning: python.exe was compiled with optimization - stepping may behave
oddly; variables may not be available.

(11db)
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By entering run in LLDB, the program starts execution and halts at the main function.
According to the output, we are currently at line 15 of python. ¢, preparing to execute the
function Py BytesMain().

Tracing into Py BytesMain():

// file: Modules/main.c
int
Py BytesMain(int argc, char **argv)
{
_PyArgv args = {
.argc = arge,
.use_bytes argv = 1,
.bytes argv = argv,
.wchar_argv = NULL};
return pymain main(&args);

It appears that this function primarily performs argument conversion and then calls
pymain_main():

// file: Modules/main.c

static int
pymain_main(_PyArgv *args)
{

// ... omitted ...

return Py RunMain();

Tracing further to the Py RunMain() function:
// file: Modules/main.c
int
Py RunMain(void)
{

int exitcode = 0;
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pymain_run_python(&exitcode);

// ... omitted ...

The pymain_run_python() function here is quite crucial:
// file: Modules/main.c

static void
pymain_run_python(int *exitcode)

{
// ... omitted ...
if (config->run_command) {
*exitcode = pymain_run_command(config->run_command);
}
else if (config->run module) {
*exitcode = pymain_run_module(config->run_module, 1);
}
else if (main_importer path != NULL) {
*exitcode = pymain_run module(L" main_ ", 0);
}
else if (config->run filename != NULL) {
*exitcode = pymain run file(config);
}
else {
*exitcode = pymain_run_stdin(config);
}
// ... omitted ...
}

Because we are running python hello.py, execution will follow the config->run_
filename branch and invoke the pymain_run_file() function:

// file: Modules/main.c

static int
pymain_run file(const PyConfig *config)
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{
// ... omitted ...
int res = pymain_run file obj(program name, filename,
config->skip source first line);
// ... omitted ...
}

Reading the Program File

Up to this point, the program hasn’t actually executed our code—it has only just read the
file hello.py. The real action is about to start in the following pymain _run file obj()
function.

// file: Modules/main.c

static int
pymain_run file obj(PyObject *program name, PyObject *filename,
int skip_source first line)

{
// ... omitted ...
FILE *fp = Py fopen obj(filename, "rb");
// ... omitted ...
PyCompilerFlags cf = PyCompilerFlags INIT;
int run = PyRun AnyFileObject(fp, filename, 1, &cf);
return (run != 0);
}

The key line of this function is the call to _PyRun_AnyFileObject():
// file: Python/pythonrun.c
int
_PyRun_AnyFileObject(FILE *fp, PyObject *filename, int closeit,
PyCompilerFlags *flags)
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{
// ... omitted ...

int res;
if (_Py FdIsInteractive(fp, filename)) {
res = PyRun_InteractiveloopObject(fp, filename, flags);
if (closeit) {
fclose(fp);

}

else {
res = PyRun SimpleFileObject(fp, filename, closeit, flags);
}

// ... omitted ...

Here, the Py FdIsInteractive() function checks whether Python should run in
interactive mode. But why might a . py file run in interactive mode? For example, if your
script uses the input () function, it’s running in an interactive context. In our hello.
py example, there’s no interactive component, so execution proceeds to the PyRun_
SimpleFileObject() function:

// file: Python/pythonrun.c
int
_PyRun_SimpleFileObject(FILE *fp, PyObject *filename, int closeit,
PyCompilerFlags *flags)
// ... omitted ...

m = PyImport AddModule(" main_");
// ... omitted ...

int pyc = maybe pyc file(fp, filename, closeit);
// ... omitted ...

if (pyc) {
FILE *pyc fp;
// ... omitted ...
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pyc_fp = Py fopen obj(filename, "rb");
// ... omitted ...

v = run_pyc_file(pyc fp, d, d, flags);
} else {
// ... omitted ...

v = pyrun_file(fp, filename, Py file input, d, d,
closeit, flags);

}
// ... omitted ...

Within this function, Python first creates a module named __main__, which is where
your program will execute. Next, it checks whether a corresponding . pyc file (compiled
bytecode) exists. If so, it reads the . pyc file as binary and calls run_pyc_file();
otherwise, it calls pyrun_file(). Since our hello.py doesn’t have a . pyc file yet, it
proceeds to pyrun_file().

Typically, running a project will generate a . pyc file so that the next execution can
skip recompilation and go straight to running the bytecode. If you want to manually
generate a . pyc file, you can use the py compile module:

$ python -m py compile hello.py

Building the Abstract Syntax Tree
Now, let’s look at the pyrun_file() function:
// file: Python/pythonrun.c

static PyObject *
pyrun_file(FILE *fp, PyObject *filename, int start, PyObject *globals,
PyObject *locals, int closeit, PyCompilerFlags *flags)

PyArena *arena = PyArena New();
// ... omitted ...

mod_ty mod;
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mod = PyParser ASTFromFile(fp, filename, NULL, start, NULL, NULL,
flags, NULL, arena);
// ... omitted ...

PyObject *ret;
if (mod != NULL) {

ret = run_mod(mod, filename, globals, locals, flags, arena);
}
else {

ret = NULL;
}

_PyArena Free(arena);
return ret;

Here, an “arena” object is created for memory management. When the program
completes, releasing the entire arena simplifies memory cleanup (essentially running a
loop and calling PyMem_Free() on each object).

Next, as the name suggests, the PyParser ASTFromFile() function reads the
Python code and parses it into an Abstract Syntax Tree (AST). The details of AST
conversion will be covered in a later chapter—at this stage, just know that this is where
the source file is read and transformed into an AST.

Creating the Code Object

Once the transformation is complete, we proceed to the run_mod() function:
// file: Python/pythonrun.c

static PyObject *
run_mod(mod_ty mod, PyObject *filename, PyObject *globals, PyObject
*locals, PyCompilerFlags *flags, PyArena *arena)

{
PyThreadState *tstate = PyThreadState GET();

PyCodeObject *co = PyAST Compile(mod, filename, flags, -1, arena);
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// ... omitted ...

PyObject *v = run_eval code obj(tstate, co, globals, locals);
Py DECREF(co);
retuxrn v;

The main action here is _PyAST Compile(), which compiles the AST into a Code
Object. The concept and implementation of Code Objects will also be described in detail
in a later chapter.

Ready for Liftoff!

The next step is to execute the compiled Code Object, which is handled by the run_
eval code obj() function:

// file: Python/pythonrun.c

static PyObject *
run_eval code obj(PyThreadState *tstate, PyCodeObject *co, PyObject
*globals, PyObject *locals)

{
PyObject *v;
_PyRuntime.signals.unhandled keyboard interrupt = 0;
// ... omitted ...
v = PyEval EvalCode((PyObject*)co, globals, locals);
if (!v 8% PyErr Occurred(tstate) == PyExc KeyboardInterrupt) {
_PyRuntime.signals.unhandled keyboard interrupt = 1;
}
retuxrn v;
}

Finally, the PyEval EvalCode() function is where your hello.py code is actually
executed. After this entire journey, we've arrived at the final step. This function runs your
Code Object and returns the result. If all goes well, you'll see “Hello Kitty” printed on
your screen.

119



CHAPTER 12 WHAT HAPPENS WHEN PYTHON STARTS

Mission accomplished! This covers the steps taken by the Python interpreter to
execute the hello.py script you wrote. There are many details, such as ASTs, Code
Objects, the execution environment, and more. We will explore these aspects chapter by
chapter in the following sections.
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From Source to Bytecode:
How .py Becomes .pyc

Although Python is often classified as an interpreted language, Python code is actually
compiled to bytecode before execution, as we've mentioned several times in previous
chapters. The . pyc file is the file generated from this compilation process, and its main
purpose is to boost program execution speed. In this chapter, we’ll take a closer look at
how these . pyc files are generated and what interesting things they contain.

Having a .pyc Is All You Need
To experiment, I prepared a rather (not really) impressive hello module:
# file: hello.py

def greeting(name):
print(f"Hello, {name}!")

And a main script, app.py:
# file: app.py

from hello import greeting
greeting("Kitty")
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These codes are trivial, serving purely for demonstration. After running the python
app.py command, you should notice anew __pycache _directory in your folder,
containing a file named hello.cpython-312.pyc:

F—  pycache

| L— hello.cpython-312.pyc

— app.py

L— hello.py

The encoding of the filename hello.cpython-312.pyc is straightforward—it’s based
on the version of Python used for compilation.

This file is the bytecode file produced after Python compiles the code. Note that only
a .pyc file for hello.py is generated at this point. If you also want to produce a . pyc file
for app.py, you can use the built-in py _compile module:

$ python -m py compile app.py
Or use the even more convenient compileall module:
$ python -m compileall .

This will compile all . py files in the directory to . pyc files at once.

Next, you can delete the . py source files, go into the __pycache _ directory, and
rename app.cpython-312.pyc and hello.cpython-312.pyc to app.pyc and hello. pyc,
respectively. Then, by running python app.pyc, you'll find that your program still runs
perfectly fine.

$ python app.pyc
Hello, Kitty!

There’s nothing mysterious here. As mentioned in the previous chapter, during
Python’s process of reading program files, the maybe pyc file() function checks if the
fileis a . pyc; if so, the file is read in binary and executed accordingly.

Sometimes you may not want to distribute source code for various reasons, and
providing only the . pyc files is enough for execution. Why someone would choose not to
distribute source code is not my concern here; what I am curious about is why running
python app.py does not produce a .pyc for the main script, while modules imported by
the main script, such as hello, do.

This is related to Python’s import mechanism.
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“Maybe” a .pyc File?

We've covered Python’s import mechanism in earlier chapters. The first part takes place
in Python/import.c, and the latter is handled by Lib/importlib/ bootstrap.py.

However, as seen in the previous chapter, when executing the main script, if you
trace from the initial Py BytesMain() down to the final run_eval code obj() function,
you'll notice that there’s no process generating a . pyc file. Although Python first checks
for an existing . pyc during execution (reading it in binary if it exists), otherwise running
pyrun_file(), in most cases, scripts are run only once. So, while saving a . pyc for
faster future runs is possible, it’s generally unnecessary—hence Python doesn’t bother
generating a . pyc for the main script. On the other hand, modules imported into various
scripts are likely to be reused across different programs, so compiling them to .pyc does
make sense for performance

But then, why is the function called maybe pyc file()—why the doubt? Isn’t
programming mostly black and white, 0 or 1? Let’s see what’s happening:

// file: Python/pythonrun.c

static int
maybe pyc file(FILE *fp, PyObject *filename, int closeit)
{
PyObject *ext = PyUnicode FromString(".pyc");
if (ext == NULL) {
return -1;
}
Py ssize t endswith = PyUnicode Tailmatch(filename, ext, 0, PY SSIZE T_
MAX, +1);
Py DECREF(ext);
if (endswith) {
return 1;

}
// ... snipped ...

/* Read only two bytes of the magic. If the file was opened in
text mode, the bytes 3 and 4 of the magic (\r\n) might not
be read as they are on disk. */
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unsigned int halfmagic = PyImport GetMagicNumber() & OXFFFF;

unsigned char buf[2];

/* Mess: In case of -x, the stream is NOT at its start now,
and ungetc() was used to push back the first newline,
which makes the current stream position formally undefined,
and a x-platform nightmare.

Unfortunately, we have no direct way to know whether -x
was specified. So we use a terrible hack: 1if the current
stream position is not 0, we assume -x was specified, and
give up. Bug 132850 on Sourceforge spells out the
hopelessness of trying anything else (fseek and ftell
don't work predictably x-platform for text-mode files).

*/

int ispyc = 0;

if (ftell(fp) == 0) {

if (fread(buf, 1, 2, fp) == 2 8&
((unsigned int)buf[1]<<8 | buf[0]) == halfmagic)
ispyc = 1;
rewind(fp);
}

return ispyc;

This function checks:
o Whether the filename ends with . pyc.

o Ifitdoesn’t, it checks whether the first two bytes of the file match
Python’s “magic number.”

We'll discuss this magic number soon, but there’s also a comment in the middle
about a complicated condition stemming from platform-specific issues, as detailed in a
SourceForge bug report. Due to difficulties predicting stream positions across platforms
(especially when the -x option is involved), in certain cases, the function simply gives
up—possibly explaining the cautious naming with maybe .
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Magic Number, Magic!

So, what is this “magic number”? Let’s see how PyImport GetMagicNumber () retrieves it:

// file: Python/import.c

long
PyImport GetMagicNumber (void)

{

long res;
PyInterpreterState *interp = PyInterpreterState GET();
PyObject *external, *pyc magic;

external = PyObject GetAttrString(IMPORTLIB(interp), " bootstrap
external");
if (external == NULL)
return -1;
pyc_magic = PyObject GetAttrString(external, " RAW MAGIC NUMBER");
Py DECREF(external);
if (pyc_magic == NULL)
return -1;
res = Pylong AsLong(pyc_magic);
Py DECREF(pyc_magic);
return res;

This fetches the RAW_MAGIC_NUMBER attribute from the Python module importlib.

bootstrap_external. Let’s keep digging:

# file: Lib/importlib/ bootstrap external.py

MAGIC NUMBER = (3531).to bytes(2, 'little') + b'\r\n’
_RAW_MAGIC NUMBER = int.from bytes(MAGIC NUMBER, 'little') # For import.c
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Here’s some familiar Python code again. The .to_bytes() method with argument
‘little’ meanslittle-endian order (as opposed to big-endian). For example, using the
number 9527:

e 9527 in hexadecimal is 0x2537.
o Inbig-endian, the most significant byte (MSB) comes first: \x25\x37.
o Inlittle-endian, the least significant byte (LSB) comes first: \x37\x25.

Back to the code: the number 3531 is converted into two bytes (little-endian), and
then \r\n is appended, forming the “magic number.” Scrolling up a bit in the source,
you'll find the meaning of 3531:

# file: Lib/importlib/ bootstrap.py

# Known values:
# Python 1.5: 20121
# Python 1.5.1: 20121
# Python 1.5.2: 20121
Python 1.6: 50428
Python 2.0: 50823
. Snipped ...
Python 2.7a0 62211 (introduce MAP_ADD and SET ADD)
Python 3000: 3000
3010 (removed UNARY CONVERT)
3020 (added BUILD SET)
. Snipped ...
Python 3.12b1 3530 (Shrink the LOAD SUPER ATTR caches)
Python 3.12b1 3531 (Add PEP 695 changes)

HORH R R OB R OB R OB R B R

Python 3.13 will start with 3550

This shows that each Python version has a corresponding magic number. We can
check it in the REPL; different Python versions have different magic numbers:

# Python 3.11.9

>>> from importlib. bootstrap external import MAGIC_NUMBER
>>> MAGIC NUMBER

b'\xa7\r\r\n'
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# Python 3.12.6

>>> from importlib. bootstrap external import MAGIC_NUMBER
>>> MAGIC NUMBER

b'\xcb\r\r\n'

Here, using Python 3.11 and 3.12, you can see the magic numbers are different.
Recall that we used the py_compile module to generate a . pyc. Let’s see how it works

internally:
# file: Lib/py compile.py

def compile(file, cfile=None, dfile=None, doraise=False, optimize=-1,
invalidation mode=None, quiet=0):
# ... snipped ...

if invalidation_mode == PycInvalidationMode.TIMESTAMP:
source stats = loader.path stats(file)
bytecode = importlib. bootstrap external. code to timestamp pyc(
code, source stats['mtime'], source stats['size'])
else:
source hash = importlib.util.source hash(source bytes)
bytecode = importlib. bootstrap external. code to_hash pyc(
code,
source_hash,
(invalidation _mode == PycInvalidationMode.CHECKED HASH),

)
# ... snipped ...

In the compile function, you'll see it decides whether to use _code_to_timestamp_
pyc() or _code to_hash_pyc() based on certain conditions. Let’s check these two

functions:
# file: Lib/importlib/ bootstrap external.py

def code to timestamp pyc(code, mtime=0, source size=0):
data = bytearray(MAGIC NUMBER)
data.extend(_pack uint32(0))
data.extend(_pack uint32(mtime))
data.extend(_pack uint32(source size))
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data.extend(marshal.dumps(code))
return data

def code to hash pyc(code, source hash, checked=True):
data = bytearray(MAGIC_NUMBER)
flags = 0b1 | checked << 1
data.extend(_pack uint32(flags))
assert len(source hash) ==
data.extend(source_hash)
data.extend(marshal.dumps(code))
return data

Although the contents packed in the middle differ, both start with the magic number,
which is stored at the very beginning of the ByteArray during compilation. In other
words, bytecode compiled by different Python versions will be different.

I did a simple experiment: compile app.pyc with Python 3.11 and hello.pyc with
Python 3.12, then run:

$ python app.pyc
RuntimeError: Bad magic number in .pyc file

This demonstrates that bytecode compiled by different Python versions is
incompatible.

As for the compileall module, looking into its source, you'll see it’s just a loop that
calls py _compile.compile() for each file. Now that we get the mechanism, we can also
directly call py compile.compile() to generate a .pyc

$ python

>>> from py compile import compile
>>> compile("hello.py")

' _pycache__ /hello.cpython-312.pyc'

It works!

By now, you might believe that Python translates source to AST, then to bytecode,
and possibly saves it as a . pyc file; thus, a . pyc is just bytecode. That’s correct in general,
butlet’s open a . pyc and see what’s really inside.
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Unpacking a .pyc File

Earlier, we saw that during creation, bytecode is serialized with marshal.dumps(), so
theoretically we can use marshal.loads() to recover it. Let’s write a small program:

with open("hello.pyc", "rb") as f:
print(f.read())

Assuming you have a hello. pyc file, this just loads it in binary. The result will
look like:

b'\xcb\r\r\n\x00\x00\x00\x005\xac\xf6f1\x00\...

Notice the first few familiar bytes? Yes—the magic number. The real contents
are after these bytes, so let’s skip the first four bytes and use marshal.loads() to see
what'’s inside:

import marshal

with open("hello.pyc", "rb") as f:
f.read(16)
content = marshal.load(f)
print(type(content))

You'll see that this is a Code Object. We'll explore Code Objects in more detail in later
chapters, but for now, note that the .co_code attribute shows the bytecode contained
inside. Printing it gives:

b'\x97\x00d\x00\x84\x00Z\x00y\x01"
Is this ByteArray code? Not exactly. Let’s convert it to a list for clarity:

>>> 1list(b'\x97\x00d\x00\x84\x00Z\x00y\x01")
[151, o0, 100, O, 132, O, 90, O, 121, 1]

What do these numbers mean? Remember how we sometimes use the dis module
to decompile code into bytecode? Look at the opcode definitions:

// file: Include/opcode.h

#define CACHE 0
#define POP_TOP
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#fdefine PUSH NULL 2
#define INTERPRETER EXIT

// ... snipped ...

#define SWAP 99
#define LOAD_CONST 100
#define LOAD NAME 101
// ... snipped ...

#define YIELD VALUE 150
#define RESUME 151
#fdefine MATCH_CLASS 152
#define FORMAT VALUE 155
// ... snipped ...

Each instruction corresponds to a number; these are defined in opcode.h. Opcode
stands for Operation Code, and Python’s Virtual Machine reads and executes these. Let’s
try using the dis module to map the list of numbers to opcode names:

>>> ops = [151, O, 100, O, 132, O, 90, O, 121, 1]

>>> for op in ops:
print(dis.opname[op])

RESUME

CACHE

LOAD_CONST

CACHE

MAKE_FUNCTION

CACHE

STORE_NAME

CACHE

RETURN_CONST
POP_TOP

Now, let’s disassemble hello.py using dis:

$ python -m dis hello.py
0 0 RESUME 0
1 2 LOAD_CONST 0 (<code object greeting>)
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4 MAKE_FUNCTION 0
6 STORE_NAME 0 (greeting)
8 RETURN_CONST 1 (None)

. snipped ...
The opcode value for CACHE is 0. If you remove CACHE, the instructions look like this:

RESUME
LOAD_CONST
MAKE_FUNCTTON
STORE_NAME
RETURN_CONST
POP_TOP

This matches what the dis module shows.
So, to be more precise, the bytecode stored in a . pyc file is actually a ByteArray
composed of a sequence of opcodes, and Python’s VM executes them one by one.
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CHAPTER 14

The List Object and Its
Internal Management

Some programming languages, such as C, require arrays to store only one type of
data and to have their size defined in advance. The advantage of this approach is high
performance and efficient memory usage, but it can feel restrictive if you are used to
dynamically adding or removing elements in your code. In contrast, Python’s 1ist has
none of these constraints: you can store elements of different types, insert and remove
items at any time, and don’t need to worry about whether they are numbers, strings, or
any other kind—just put them in the list. This design is extremely convenient.

But how does CPython implement this kind of data structure? How does it
dynamically increase its capacity? In this chapter, we will see how lists work under
the hood

Internal Structure of Lists

In previous chapters, we briefly looked at the structure of list objects, which looks
roughly like this:

// file: Include/cpython/listobject.h

typedef struct {
PyObject VAR HEAD
PyObject **ob_item;
Py ssize t allocated;
} PyListObject;
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For integers, floats, and strings introduced previously, the structure begins with
PyObject HEAD, whereas lists use PyObject_VAR_HEAD. What's the difference between
these two?

// file: Include/object.h

#define PyObject HEAD PyObject ob_base;
#define PyObject VAR HEAD PyVarObject ob_base;

Both macros define an ob_base member, but PyObject HEAD sets its type as
PyObject, while PyObject_VAR_HEAD uses PyVarObject. We've already seen PyObject;
here’s the definition of PyVarObject:

// file: Include/object.h

typedef struct {

PyObject ob_base;

Py ssize t ob_size; /* Number of items in variable part */
} PyVarObject;

Aside from the basic structure of PyObject, PyVarObject adds an ob_size field,
which records the number of elements in the list. When you execute len(["a", "b",
"c"]) and get 3, that’s because Python reads the value of this ob_size member. Back
in the PyListObject structure, ob_itemis a pointer to an array of PyObject*, storing
pointers to all elements in the list.

The allocated member records the amount of memory currently allocated for
the ob_itemarray. It is usually greater than or equal to ob_size (the actual number of

elements), and we will soon see how this number changes.

Creating and Initializing a List

When you create a new list in Python, CPython looks for the tp_new member in PyList_
Type, which points to the PyType_GenericNew() function:

// file: Objects/typeobject.c

PyObject *
PyType GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
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return type->tp alloc(type, 0);

This function merely calls the function pointed to by the tp_alloc member. For lists,
tp_alloc points to the PyType GenericAlloc() function:

// file: Objects/typeobject.c

PyObject *
PyType GenericAlloc(PyTypeObject *type, Py ssize t nitems)
{
PyObject *obj = PyType AllocNoTrack(type, nitems);
if (obj == NULL) {
return NULL;
}

if (_PyType IS GC(type)) {
_PyObject GC_TRACK(obj);
}

return obj;

The PyType AllocNoTrack() function requests sufficient memory from the system
based on the type and the number of requested items (nitems). But how is the required
memory calculated?

// file: Objects/object.c

PyObject *
_PyType AllocNoTrack(PyTypeObject *type, Py ssize t nitems)
{

PyObject *obj;

const size t size = PyObject VAR SIZE(type, nitems+1);

const size t presize = PyType PreHeaderSize(type);
char *alloc = PyObject Malloc(size + presize);
// ... omitted ...
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if (type->tp itemsize == 0) {
_PyObject Init(obj, type);

}
else {

_PyObject InitVar((PyVarObject *)obj, type, nitems);
}

return obj;

First, the macro PyObject VAR SIZE() computes the size of memory to allocate.
How is it calculated?

// file: Include/cpython/objimpl.h

static inline size t PyObject VAR _SIZE(PyTypeObject *type, Py ssize t
nitems) {
size t size = Py STATIC CAST(size t, type->tp basicsize);
size += Py STATIC CAST(size t, nitems) * Py STATIC CAST(size t,
type->tp_itemsize);
return Py SIZE ROUND UP(size, SIZEOF VOID P);

As the function name suggests, this calculation applies to any object with a variable
size, not just lists. The calculation is straightforward: tp_basicsize is the base size of the
type, tp_itemsize is the size of each individual element, and nitems is the number of
elements required. The formula is simply:

size = tp basicsize + (tp_itemsize x nitems)

Atthe end, Py SIZE ROUND_UP() ensures memory alignment. The macro
expands to:

// file: Include/pymacro.h

#tdefine Py SIZE ROUND UP(n, a) (((size t)(n) + \
(size t)((a) - 1)) & ~(size_t)((a) - 1))
While this formula appears complex, it simply rounds n up to the nearest multiple of

a. In CPython, SIZEOF_VOID P is defined as 8, so all allocations are to 8-byte boundaries.
For example, if size is computed as 61, it is rounded up to 64; if it is 65, it becomes 72.
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Why do this? Memory alignment ensures efficient and correct access of elements
in memory.

Next, PyType PreHeaderSize() checks whether additional memory is needed (e.g.,
to store garbage collection metadata). If so, a fixed amount of extra memory is allocated,
regardless of the number of elements. For reference, in Python, some objects (like small
integers from -5 to 256, or the immortal references for True, False, and None) never
release their memory back to the system.

Finally, PyObject Malloc() requests the memory from the system based on the
computation.

Once the memory has been allocated, either PyObject Init() or PyObject
InitVar() is called depending on tp_itemsize. The main difference is that PyObject
InitVar() additionally initializes the ob_size field.

For PyList Type, tp_itemsizeis0,so PyObject Init() is called. Butwhyistp
itemsize zero? Wasn't the formula tp_basicsize + (tp_itemsize x nitems)?Iftp
itemsize is 0, doesn’t this mean the list doesn’t need to store any elements? In reality,
the elements are stored elsewhere; the memory in the list object stores only pointers to
the elements, not the elements themselves. This design allows lists to store objects of
varying types.

At this point, list initialization is complete, and elements can now be added to
the list.

Memory Management

A core feature of Python lists is dynamic resizing. If memory were reallocated every time
an element was added, performance would be poor. To avoid this, Python over-
allocates: when it needs more memory, it requests extra space in anticipation of future
growth, thus reducing frequent reallocations. Think of it as asking your parents for extra
allowance in advance so you don’t need to ask too often. This strategy is called “over-
allocation”.

The logic for this operation is defined in the 1ist resize() function:

// file: Objects/listobject.c

static int
list resize(PyListObject *self, Py ssize t newsize)
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{

PyObject **items;
size t new allocated, num allocated bytes;
Py ssize t allocated = self->allocated;

if (allocated >= newsize && newsize >= (allocated >> 1)) {
assert(self->ob_item != NULL Il newsize == 0);
Py SET SIZE(self, newsize);
retuxn O;

}

// ... omitted ...

new allocated = ((size t)newsize + (newsize >> 3) + 6) & ~(size t)3;

if (newsize - Py SIZE(self) > (Py ssize t)(new _allocated - newsize))
new allocated = ((size t)newsize + 3) & ~(size t)3;

// ... omitted ...

self->ob item = items;

Py SET SIZE(self, newsize);
self->allocated = new_allocated;
return 0;

When Is More Memory Needed?

First, the function checks whether resizing is really necessary. If the current allocation

suffices, it merely updates the ob_size value. What does “enough” mean?
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1. The currently allocated space (allocated) is greater than or equal
to the new required size (newsize).

2. The new required size is greater than or equal to half the current
allocation (allocated >> 1, whichisallocated / 2).

Both conditions must be true to avoid a reallocation. Some examples are as follows.
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1. Adding Elements, But Within Current Capacity

If 8 slots are allocated and 5 are used, adding 2 more elements brings newsize to 7. Since
8 >= 7and7 >= 4, noreallocation is needed—just update ob_size to 7.

2. Adding Elements, Now Exceeding Capacity

If 10 slots are allocated and all are used, adding 1 more element sets newsize to 11. Since
10 >= 11is false, reallocation is required.

3. Removing Some Elements, But Still Above Half the Capacity

If 16 slots are allocated and all used, deleting 5 elements brings newsize to 11. Because
16 >= 1land 11 >= 8, no reallocation occurs—just update ob_sizeto 11.

4. Sharply Decreasing Size

If 100 slots were allocated and all used, deleting 80 elements leaves newsize at 20. While
100 >= 20istrue, 20 < 50 is false, so memory will be reallocated.

5. Clearing the List

If 10 slots are allocated and 5 are used, clearing the list sets newsize to 0. Though 10 >=
Oistrue, 0 < 5 isnot, prompting a reallocation.
By the way, Python provides several ways to clear a list:

numbers = [9, 5, 2, 7]

# Method 1
numbers.clear()

# Method 2
numbers = []

Calling the . clear () method directly invokes the C-implemented list resize()
and is very efficient. The second method creates a new empty list and points the variable
to it; if the original list has no other references, it will eventually be garbage collected.
This approach is a bit less efficient.
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The Over-allocation Formula

The formula for over-allocation is written directly in 1ist resize():
// file: Objects/listobject.c

static int
list resize(PyListObject *self, Py ssize t newsize)
{

// ... omitted ...

new_allocated = ((size t)newsize + (newsize >> 3) + 6) & ~(size t)3;
if (newsize - Py SIZE(self) > (Py ssize t)(new allocated - newsize))
new allocated = ((size t)newsize + 3) & ~(size t)3;

// ... omitted ...

new_allocated is calculated differently under certain conditions, but let’s look at
the main line first. In addition to allocating space for newsize, Python adds a bit more:
newsize >> 3 (whichisnewsize / 8), plus 6. The purpose of adding 6 is to ensure
enough spare capacity for small lists, avoiding frequent reallocations. The operation &
~(size_t)3 aligns the size to a multiple of 4.

For example, if newsize is 1, the calculation is:

1+((1>3)+6=1+0+6=7

After alignment, it becomes 8 (next multiple of 4).
If newsizeis5:

5+ (5> 3)+6=5+0+6=11

After alignment, it becomes 12.

Due to this formula, the resulting allocation sizes are always multiples of 4: 0, 4, 8,
12, 16, 20, etc. If you remove the “+ 6’ small lists would be reallocated for every new
element, hurting performance. Adding a little extra might waste some memory, but it
greatly improves performance.

140



CHAPTER 14  THE LIST OBJECT AND ITS INTERNAL MANAGEMENT

What about the if statement that follows? This is to avoid severe over-allocation
when the list suddenly grows by a large amount. For example, if the current size is 100
and you want to extend it to 1,000, newsize is 1,000. Without this check, reallocation
would result in 1,000 + 125 + 6 = 1,131, rounded up to 1,132 for alignment. With this
check, only 1,003 elements are allocated (1,000 + 3), rounded up to 1,004.

Common List Operations

Now, let’s look at how some of the main list operations are implemented. The methods
available on list objects are defined in the tp_methods member of PyList Type. Here,
we'll review the implementation of append, insert, and remove.

Appending Elements
At the Clevel, the list’s .append() method corresponds to the 1ist_append function:
// file: Objects/listobject.c

static PyObject *
list_append(PyListObject *self, PyObject *object)

{
if (_PyList AppendTakeRef(self, Py NewRef(object)) < 0) {
return NULL;
}
Py RETURN_NONE;
}

The real logic is inside PyList AppendTakeRef():
// file: Include/internal/pycore list.h

static inline int
_PyList AppendTakeRef(PyListObject *self, PyObject *newitem)
{

assert(self != NULL && newitem != NULL);

assert(PyList Check(self));

Py ssize t len = PylList GET SIZE(self);

Py ssize t allocated = self->allocated;
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assert((size t)len + 1 < PY_SSIZE T MAX);
if (allocated > len) {
PyList SET ITEM(self, len, newitem);
Py SET SIZE(self, len + 1);
return O;

}
return Pylist AppendTakeReflListResize(self, newitem);

Here, allocated is the current allocation, and len is obtained from ob_size
(the number of elements). If there is enough space, the new element is appended
directly and the list length is updated, which is very fast. If not, PylList
AppendTakeRefListResize() is called, which reallocates memory by calling the list
resize() function described earlier.

Inserting Elements

The list’s . insert() method corresponds to the list_insert function:
// file: Objects/listobject.c

static PyObject *
list _insert(PyListObject *self, PyObject *const *args, Py ssize t nargs)
{

// ... omitted ...

return value = list insert impl(self, index, object);

// ... omitted ...

The main logic resides in 1ist_insert impl():
// file: Objects/listobject.c

static int
ins1(PyListObject *self, Py ssize t where, PyObject *v)
{

// ... omitted ...

if (list resize(self, n+1) < 0)

return -1;
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if (where < 0) {
where += n;
if (where < 0)

where = 0;
}
if (where > n)
where = n;

items = self->ob_item;

for (i = n; --i >= where; )
items[i+1] = items[i];

items[where] = Py NewRef(v);

return 0;

This function also calls 1ist_resize() since inserting an element increases the list’s
size and could require memory reallocation. The actual insertion involves moving each
element after the insertion point one slot to the right and placing the new element into
the desired position—a straightforward approach.

Removing Elements

Finally, let’s look at the .remove () method, which corresponds to the 1ist_remove

function:
// file: Objects/listobject.c

static PyObject *
list remove(PyListObject *self, PyObject *value)
{

Py ssize t i;

for (i = 0; i < Py SIZE(self); i++) {
PyObject *obj = self->ob item[i];
Py INCREF(obj);
int cmp = PyObject RichCompareBool(obj, value, Py EQ);
Py DECREF(obj);
if (cmp > 0) {
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if (list ass slice(self, i, i+1,
(PyObject *)NULL) == 0)
Py RETURN_NONE;
return NULL;
}
else if (cmp < 0)
return NULL;
}
PyErr SetString(PyExc ValueError, "list.remove(x): x not in list");
return NULL;

This function runs a for loop that compares each element to the target value. If no

element matches, it raises an error:

>>> numbers = [9, 5, 2, 7]
>>> numbers.remove(100)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: list.remove(x): x not in list

If a match is found, 1list_ass_slice() is called to remove the element at that
position by slicing. Here, ass stands for “assign”. In Python terms, the equivalent
operation is self[i:i+1] = [], which deletes the element at index i.
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The Dictionary
Object: Part 1

Just like lists, dictionaries (dict) are one of the most frequently used data types in Python.
Dictionaries allow data access through key/value pairs, providing excellent performance.
In this chapter, we’ll explore how dictionaries are implemented in Python.

The Internal Structure of Dictionaries

By now, you might have guessed—without even looking at the source code—that the
dictionary object in CPython is called PyDictObject. Let’s take a look at its structure:

In CPython, the internal structure of a dictionary is defined in the file Include/
dictobject.h.I've removed some conditional compilations for clarity; it looks like this:

// file: Include/cpython/dictobject.h

typedef struct {
PyObject_HEAD
Py ssize t ma_used;
uint64 t ma_version tag;
PyDictKeysObject *ma_keys;
PyDictValues *ma_values;

} PyDictObject;
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Leaving aside the uses of these fields for now, you'll notice that several members
in this structure start with ma_. What does this mean? In Python’s naming conventions,
ma stands for Mapping—a general term in Python representing data structures
accessible by key/value pairs, such as dictionaries and sets. We've actually seen similar
conventions before:

o ob_:Used for members in PyObject, such asob_refcnt, ob_size, etc.

o tp :Used for members in PyTypeObject, such as tp_name,
tp_init, etc.

e sq_:Used for sequence members, such as sq_length, sq_item, etc.

e nb_:Used for numeric type members, such as nb_add,
nb_subtract, etc.

o co_:Used for code object members, such as co_argcount,
co_consts, etc.

Back to the PyDictObject structure, here are a few important members:
e ma_used: The number of elements currently in the dictionary
o ma_keys: A PyDictKeysObject instance
o ma_values: APyDictValues instance

Hmm...at a glance, it appears that the keys and values of a dictionary are stored
as separate objects. This seems a bit odd—why not store them together in a single
object? Let’s dig deeper into what these two structures actually contain, starting with
PyDictKeysObject:

// file: Include/internal/pycore dict.h

struct dictkeysobject {
Py ssize t dk refcnt;
uint8 t dk_log2 size;
uint8 t dk log2 index_ bytes;
uint8 t dk_kind;
uint32_t dk_version;
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Py ssize t dk usable;
Py ssize t dk nentries;
char dk_indices[];

};

This contains fields like the reference count and some members whose purposes
aren’t immediately apparent. Let’s proceed to look at the PyDictValues structure:

// file: Include/internal/pycore dict.h

struct dictvalues {
PyObject *values[1];
b5
This is just a straightforward values member—very simple. But then, if the structure

is so basic, why not put it directly inside the PyDictKeysObject? Let’s look at how Python
creates a new dictionary object.

Creating a Dictionary

Following the process we've learned before, we should look for the tp_new member of
the PyDict Type type:

// file: Objects/dictobject.c

static PyObject *
dict _new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

// ... omitted ...

PyObject *self = type->tp alloc(type, 0);
if (self == NULL) {

return NULL;
}

// ... omitted ...

return self;
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As expected, it first calls tp_alloc, which—for dictionaries—also points to the
_PyType AllocNoTrack() function. This is the same as what we saw for list objects in the
previous chapter: although lists and dictionaries have different structures, their memory
calculation and allocation strategies are the same. Let’s look further down in dict_new:

// file: Objects/dictobject.c

static PyObject *
dict _new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

// ... omitted ...

PyDictObject *d = (PyDictObject *)self;

d->ma_used = 0;

d->ma_version tag = DICT NEXT_VERSION(
_PyInterpreterState GET());

dictkeys incref(Py EMPTY KEYS);

d->ma_keys = Py EMPTY KEYS;

d->ma_values = NULL;

// ... omitted ...

This is about initialization: setting ma_used to 0 means the dictionary has no
elements yet, and settingma_values to NULL means there are no values yet. These are
pretty clear. But whatis ma_keys pointing to—what is Py EMPTY KEYS?

// file: Objects/dictobject.c

static PyDictKeysObject empty keys struct = {

_Py IMMORTAL REFCNT, /* dk refcnt */

0, /* dk log2 size */

0, /* dk_log2_index bytes */

DICT KEYS UNICODE, /* dk kind */

1, /* dk _version */

0, /* dk usable (immutable) */

0, /* dk nentries */

{DKIX EMPTY, DKIX EMPTY, DKIX EMPTY, DKIX EMPTY,

DKIX EMPTY, DKIX EMPTY, DKIX EMPTY, DKIX EMPTY}, /* dk indices */
};
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Py _EMPTY_KEYS is actually a PyDictKeysObject instance, but with a twist: this empty
dictionary is immutable and immortal (cannot be destroyed). This means all empty
dictionaries can share this object, saving memory and avoiding repeated creation of
empty key objects.

Additionally, the last part of this empty keys object contains eight DKIX_EMPTY values.
DKIX EMPTY is -1, indicating an empty slot. If you get this value during a lookup, it means
the slot is empty and you can stop searching.

So, even an empty dictionary is allocated some space. This may seem wasteful, but
from a performance standpoint, for dictionaries with fewer than eight key/value pairs,
you can use this pre-allocated space and save on memory allocation time—a trade-off of
space for speed.

Now I'm starting to understand why the keys and values in a dictionary are stored in
separate objects.

Adding Elements

Now that we have a general idea of the dictionary’s structure, let’s look at the process of
adding an element. Suppose we have an empty dictionary, and we add a key with the
value "Kitty":

hero = {}
hero[ "name"] = "Kitty"

Accessing or assigning items using square brackets in a dictionary is (as we've seen
so far) implemented via the tp_as_mapping member in PyDict Type:

// file: Objects/dictobject.c

static PyMappingMethods dict as mapping = {
(lenfunc)dict length, /*mp length*/
(binaryfunc)dict subscript, /*mp subscript*/
(objobjargproc)dict ass sub, /*mp _ass subscript*/

};
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So the operation hero[ "name"] = "Kitty" triggers the dict_ass_sub method:
// file: Objects/dictobject.c

static int
dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w)
{
if (w == NULL)
return PyDict DelItem((PyObject *)mp, v);
else
return PyDict SetItem((PyObject *)mp, v, w);

This is straightforward. The next call is to PyDict _SetItem(), which, upon
inspection, actually calls _PyDict SetItem Take2().The Take2 in the name likely
means they couldn’t think of a better name.

// file: Objects/dictobject.c
int
_PyDict SetItem Take2(PyDictObject *mp, PyObject *key, PyObject *value)
{
// ... omitted ...
Py _hash_t hash;
if (!PyUnicode CheckExact(key) Il (hash = unicode get hash(key))
== 1) {
hash = PyObject Hash(key);
if (hash == -1) {
Py DECREF(key);
Py DECREF(value);
return -1;

}
// ... omitted ...
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First, it checks if the key is a Unicode string—if yes, it uses unicode_get hash() to
compute the hash; otherwise, it uses PyObject Hash(). Personally, I don’t particularly
like such “concise” code, but maybe that’s just me. Let’s see how unicode_get hash()
computes the hash:

// file: Objects/dictobject.c

static inline Py hash t
unicode _get hash(PyObject *o)
{
assert(PyUnicode CheckExact(0));
return PyASCIIObject CAST(o)->hash;

This function is declared as inline, meaning it will be inserted directly at the call
site. The compiled file might be slightly larger, but this saves a function call and is
faster—a typical space/speed trade-off. The function simply returns the hash member
of the PyASCIIObject; this hash is calculated when the Unicode object is created. What
about the PyObject_Hash() function?

// file: Objects/object.c
Py hash t
PyObject Hash(PyObject *v)
{
PyTypeObject *tp = Py TYPE(V);
if (tp->tp_hash != NULL)
return (*tp->tp hash)(v);

// ... omitted ...
return PyObject HashNotImplemented(v);

Basically, it just returns the tp_hash member of the object’s type. Now that we've
seen how the hash is calculated, let’s move on:

// file: Objects/dictobject.c
int
_PyDict SetItem Take2(PyDictObject *mp, PyObject *key, PyObject *value)
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{

// ... omitted ...
PyInterpreterState *interp = PyInterpreterState GET();
if (mp->ma_keys == Py EMPTY KEYS) {
return insert to emptydict(interp, mp, key, hash, value);

}

return insertdict(interp, mp, key, hash, value);

If the dictionary is empty (i.e., ma_keys is Py EMPTY_KEYS), it calls insert_to_

emptydict(); otherwise, it uses insertdict(). These two functions are the core of this
process. Let’s look at insert _to emptydict(), focusing on its first part:

// file: Objects/dictobject.c

static int
insert to emptydict(PyInterpreterState *interp, PyDictObject *mp,

PyObject *key, Py hash t hash, PyObject *value)

// ... omitted ...
PyDictKeysObject *newkeys = new_keys object(
interp, PyDict LOG _MINSIZE, unicode);

// ... omitted ...
mp->ma_keys = newkeys;
mp->ma_values = NULL;

MAINTAIN TRACKING(mp, key, value);

size t hashpos = (size t)hash & (PyDict MINSIZE-1);
dictkeys set index(mp->ma_keys, hashpos, 0);

Here, it creates a new PyDictKeysObject using new_keys object() and assigns this

to the ma_keys member and sets ma_values to NULL.
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Remember how we just calculated a hash value for the key? Here, this hash value
determines its “position.” PyDict MINSIZE hasavalue of8,s0& (PyDict MINSIZE-1)
is equivalent to % 8, but faster in binary operations. What position? It’s which slot in the
dk_indices array of the newkeys object (the PyDictKeysObject we just made).

If we're taking the remainder of division by 8, the possible results are 0 through 7—a
total of eight slots. What if that’s not enough? We'll see how to enlarge this later. But what
if multiple keys hash to the same value? Of course, collisions are possible—this is known
as a hash collision. Python uses a technique called “open addressing” to resolve this,
which, simply put, means finding the next available empty spot. For example, if all eight
slots are empty:

dk_indices:
0 1 2 3 4 5 6 7

it e e e R ah Sttt S E Tl

I I I I | | I I I
R DL E L EE PR

Suppose hero["aa"] = "Hello"; assume the hash for "aa" is 81761723, so hashpos
is 81761723 % 8, or 3. The key is placed at index 3:

dk_indices:
0 1 2 3 4 5 6 7

Similarly, for hero["bb"] = "World", suppose the hash for "bb" is 28716210, which
gives hashpos 2. So “bb” goes into index 2:

dk_indices:
o 1 2 3 4 5 6 7

This works fine—but what if the computed index already has something there?
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Handling Hash Collisions

Let'sadd hero["cc"] = "Kitty". Assume the hash for "cc" is 14500523, which gives a
hashpos of 3, but position 3 is already occupied; this is a collision.

When a collision occurs, Python tries to find the next available spot. The simplest
approachisi + 1 (linear probing)—if that’s taken, try i + 2, and so on. However, this
“linear probing” can cause clustering, where later positions get filled up and searches
slow down. Honestly, I wouldn’t have thought of this if I hadn’t looked at the source—
there’s a lot to consider for performance.

Python doesn’t use linear probing (i + 1) butinstead uses this formula:

i=((5*1i)+1) %8

Not only that, but to increase randomness, Python also shifts the key’s hash value to
the right by five bits and uses this result as p in the formula:

i=(((s5*i)+p+1) %8

Here, p is hash >> 5, to make collision resolution more uniform. Of course, as p
keeps shifting right, it eventually becomes 0, returning to the original formula. If you see
the following in the source code:

perturb >>= PERTURB_SHIFT;
i = mask & (i*5 + perturb + 1);

That’s what this is doing: PERTURB_SHIFT is 5 in CPython. Let’s substitute the hash for
"cc" (14500523):

i = ((5* 3) + (14500523 >> 5) + 1) % 8

Calculate that, and you get 5, so "cc" is placed at index 5:

dk_indices:

0 1 2 3 4 5 6 7
e e et e
I I | bb | aa | | cc | I I
Rt e bt e E T

Using this method, as long as there’s enough space, the average search time
approaches 0(1), since in most cases you'll find the right spot directly from hashpos.
Once you know where a key goes, the next step is to insert the key and value:
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// file: Objects/dictobject.c
static int

insert to emptydict(PyInterpreterState *interp, PyDictObject *mp,
PyObject *key, Py hash t hash, PyObject *value)

{
// ... omitted ...
if (unicode) {
PyDictUnicodeEntry *ep = DK UNICODE ENTRIES(mp->ma_keys);
ep->me_key = key;
ep->me_value = value;
}
else {
PyDictKeyEntry *ep = DK_ENTRIES(mp->ma_keys);
ep->me_key = key;
ep->me_hash = hash;
ep->me_value = value;
}
mp->ma_used++;
mp->ma_version tag = new_version;
mp->ma_keys->dk usable--;
mp->ma_keys->dk nentries++;
return O;
}

This chooses a structure based on whether the key is a Unicode string: either
PyDictKeyEntry or PyDictUnicodeEntry:

// file: Include/internal/pycore dict.h

typedef struct {
Py _hash_t me_hash;
PyObject *me key;
PyObject *me value;
} PyDictKeyEntry;
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typedef struct {
PyObject *me_key;
PyObject *me_value;
} PyDictUnicodeEntry;

These are just key/value combinations. At the end, it updatesma_used, ma_version_
tag, dk_usable, and dk_nentries, thus completing the key/value addition.

But where are these entries stored? They are contiguous with the newkeys (the
PyDictKeysObject we created). You can locate them using the DK_ENTRIES() or
DK_UNICODE_ENTRIES() macros, which compute their location based on the memory
position of ma_keys. How do we know this? In the last part of the new_keys object()
function, you'll see:

// file: Objects/dictobject.c

dk = PyObject Malloc(sizeof(PyDictKeysObject)
+ ((size_t)1 << log2 bytes)
+ entry size * usable);

Normally, you'd only allocate as much memory as needed, but here, it allocates extra
space—entry size * usable—to hold these entries.

How are the objects linked? Remember how we computed the remainder of 8 to get
an index and placed the key in a designated slot?

dk_indices:

0 1 2 3 4 5 6 7
e e e e A it Ittt 3
I I | bb | aa | | cc | I I
Rt e e e T E e TP

But it’s not the key itself ("aa", "bb", "cc") that’s stored in the slot. Instead, the slot
stores the index of the entry corresponding to that key. What does that mean? Let me
draw it out:

dk_indices:

o 1 2 3 4 5 6 7
el e S A A A aalal 2
I It 2 120 1310 1 |

R R e aalatat =

156



CHAPTER 15  THE DICTIONARY OBJECT: PART 1

dk_entries:

D e L +
| 0 | DKIX DUMMY |
e e il +
1 | {81761723, "aa", "Hello"} |
R R e e +
| 2 | {28716210, "bb", "World"} |
D e L +
| 3 | {14500523, "cc", "Kitty"} |
e e il +

Entries are filled in order of addition. The dk_indices array stores only the index of
each entry, allowing the lookup to quickly reach the entry.

Although a little complex, it matches up. Wait, earlier we mentioned that if collisions
occur and the search moves to another spot, won'’t the indexes get mixed up? Good
question—Ilet’s look at the lookup process.

Looking Up Elements

When you look up a key (e.g., hero[ "aa" ]) in a Python dictionary, the process goes
like this:

e A.Thekey "aa" is a string object; its hash is calculated—say,
81761723.

o B. Compute the array index using the hash (modulo 8); the result is 3.
o C.Useindex3to access dk_indices, which yields 1.

e D.Useindex 1to access dk_entries, finding the corresponding
entry. You get the value "Hello".

If the key is not present, you'll find a DKIX_EMPTY at step C, indicating the key doesn’t
exist, resulting in a KeyError.
But what if there was a collision, for example, with hero[ "cc"]?

¢ A.Calculate the hash for "cc"; it’'s 14500523.
e« B.Modulo 8, index is 3.

o C.Useindex3indk_indices to getvalue 1.
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e D.Useindex1indk _entries to find the entry, but the hashes don’t
match—this is not the wanted entry.

e E. Gobackto step C, but this time use the collision resolution
formula (5 * 3 + perturb + 1) % 8, which gives 5.

o FEUseindex5indk _entries, and now you find the correct entry.

e G.Ifnotfound in F keep cycling: recalculate the next index with the
formula, check that slot, and so on.

o H.Ifnomatch is found, or a DKIX_EMPTY is encountered, the key
doesn’t exist—raise KeyError.

The lookup process may seem complex, but the computations are fast, enabling
dictionaries to perform near 0(1) lookup in most cases. Of course, if collisions increase,
performance deteriorates—meaning dk_indices isn’t big enough and needs to be
resized. In the next chapter, we’ll explore how much space is needed for dictionary
resizing.
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CHAPTER 16

The Dictionary Object:
Part 2

In the previous chapter, we explored how to create dictionary objects. However, as a
dictionary’s dk_indices array becomes increasingly filled, the frequency of collisions
rises, leading to a decline in performance. To address this, Python automatically expands
the dictionary’s capacity when it’s nearly full. As end users, we typically do not need to
worry about these details—but how is this accomplished?

If the available space is too small, the system will allocate more memory for the
dictionary. However, if too much memory is allocated at once, the risk of collisions
decreases, but this may also lead to wasted space. Therefore, the questions arise: “When”
should more memory be requested, and “how much” should be allocated each time, in
order to balance performance and memory usage? In this chapter, we will take a closer
look at how Python manages these issues.

Dictionary Memory Management Techniques
Adding More Elements

Previously, we saw that for a brand-new dictionary object, adding the first element calls
the insert to emptydict() function. However, if you wish to add an element to an
existing dictionary (i.e., not empty), the insertdict() function is called when inserting
the second and subsequent items. This function is longer and more complex, so let’s go
through it in sections:

// file: Objects/dictobject.c

static int
insertdict(PyInterpreterState *interp, PyDictObject *mp,
PyObject *key, Py hash t hash, PyObject *value)
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{
PyObject *old value;

if (DK IS UNICODE(mp->ma_keys) 88 !PyUnicode CheckExact(key)) {
if (insertion resize(interp, mp, 0) < 0)

goto Fail;

assert(mp->ma_keys->dk_kind == DICT_KEYS GENERAL);

}
// ... omitted ...

The macro DK_IS UNICODE() checks if this dictionary’s ma_keys member uses an

optimized state specifically for Unicode strings. If so, but the new key to be added is not

a Unicode string—for example, if you assign hero[42] = "Kitty"—Python will convert

the dictionary from the optimized Unicode format to the general-purpose format in

order to accommodate different types of keys. This conversion is essentially a capacity

change, which is why insertion resize() is called here. We'll discuss the specifics of

resizing later, but here’s a quick example:

import sys

fruitsl = {"apple": "Apple", "banana":
{"apple": "Apple", "banana":

fruits2 =

print(sys.getsizeof(fruits1))
print(sys.getsizeof(fruits2))

fruitsi["pineapple"] = "Pineapple"”
fruits2[42] = "Pineapple”

print(sys.getsizeof(fruits1))
print(sys.getsizeof(fruits2))

"Banana"}
"Banana"}

In Python, not only strings can be used as dictionary keys—any hashable object is

allowed. In this example, I use the string "pineapple"” and the number 42 as keys. As a

result, these otherwise identical dictionaries become different in size. When run on my

computer, this code prints:
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184
184
184
352

Why does fruits2 become larger? Because a non-Unicode key (42) was added to
fruits2, Python converts its dk_kind from the Unicode-specialized format DICT_KEYS
UNICODE to the general-purpose format DICT_KEYS_GENERAL. This format conversion
increases memory usage. In summary, although any hashable object can be used as a
key, using strings provides the best performance.

Returning to the insertdict() function, let’s look further down:

// file: Objects/dictobject.c
static int

insertdict(PyInterpreterState *interp, PyDictObject *mp,
PyObject *key, Py hash t hash, PyObject *value)

{
// ... omitted ...
Py ssize t ix = Py dict lookup(mp, key, hash, &old value);
// ... omitted ...
if (ix == DKIX_EMPTY) {
assert(old value == NULL);
if (mp->ma_keys->dk usable <= 0) {
if (insertion resize(interp, mp, 1) < 0)
goto Fail;
}
// ... omitted ...
}
}

We encounter insertion resize() again. If ix is DKIX_EMPTY, it means that the
key is new and needs to be added. At this point, the code checks if the dictionary has
available space. This is the primary checkpoint for triggering capacity changes in this
function. If there isn’t enough room, insertion resize() is called to expand capacity.
The check dk_usable <= 0 appears straightforward, but it’s not as simple as it looks.
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Should We Request More Capacity?

dk_usable is a member variable of the PyDictKeysObject structure. Judging from the
name, you might guess it tracks the number of free slots available in the dictionary.
However, that’s not exactly the case. If it did, waiting until dk_usable <= 0 to increase
capacity would be too conservative. Earlier, we mentioned that waiting until the
dictionary is nearly full would increase collisions and hurt performance. So, clearly,
dk_usable is not so literal.

Let’s take another look at the PyDictKeysObject structure, as introduced previously:

// file: Include/internal/pycore dict.h

struct dictkeysobject {
Py ssize t dk_refcnt;
uint8 t dk log2 size;
uint8 t dk_log2 index_bytes;
uint8 t dk_kind;
uint32_t dk_version;
Py ssize t dk usable;
Py ssize t dk nentries;
char dk_indices[];
b5
Let’s also borrow an example from earlier:
dk_indices:

o 1 2 3 4 5 6 7
e LEE CEEE PR EE PR s

I I 2 11| | 31 I I
R e e i L E TR T

Let me explain the PyDictKeysObject members for this case:

o dk log2 size: The size of the dictionary is 23 = 8, meaning it can
hold eight elements, so this field’s value is 3 (i.e., log2(8)).

o dk nentries: Also 3, indicating this dictionary currently stores three
keys (entries).
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The member dk_log2 index_bytes is a little special. Let me explain further. In the
previous chapter, we covered the new_keys object() function, which creates a new
PyDictKeysObject. Part of that function is as follows:

// file: Objects/dictobject.c

static PyDictKeysObject*
new_keys object(PyInterpreterState *interp, uint8 t log2 size, bool
unicode)

{
// ... omitted ...
if (log2_size < 8) {
log2 bytes = log2 size;
}
else if (log2 size < 16) {
log2 bytes = log2 size + 1;
}
else {
log2 bytes = log2 size + 2;
}
// ... omitted ...
}

Based on this, the value of dk_log2 index bytes depends on the size of the
dictionary.

o For small dictionaries (log2_size from 0to 7, i.e., up to 128
elements), this value equals dk_log2 size.

e For medium dictionaries (2/8 = 256 to 2/15 = 32,768 elements), it’s
dk_log2 size + 1.

o For large dictionaries (2716 = 65,536 slots and above), it’s
dk_log2 size + 2.

Now let’s introduce a term called “load factor,” denoted here as o (alpha). Its
calculation is:

a = used space / total available space
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In our earlier example, we are using three slots out of eight, so a is 3/8 = 0.375.
Python dictionaries generally maintain a relatively low o to ensure high performance.
As more elements are added, when o exceeds 2/3, adding a new element will trigger
capacity expansion.

But what exactly is dk_usable? How does it relate to «? Let’s have a look:

// file: Objects/dictobject.c

static PyDictKeysObject*
new_keys object(PyInterpreterState *interp, uint8 t log2 size, bool
unicode)

{
PyDictKeysObject *dk;
Py ssize t usable;
// ... omitted ...
usable = USABLE FRACTION((size t)i<<log2 size);
// ... omitted ...
}

Let’s expand the USABLE_FRACTION macro:
// file: Objects/dictobject.c
#define USABLE_FRACTION(n) (((n) << 1)/3)

<< 1 shifts bits to the left by one (i.e., multiplies by 2), and / 3 divides by 3. Thus, this
macro calculates 2/3 of the total capacity. Applying this back to our example:

o 1 2 3 4 5 6 7

Rt EEEE R R e e
| | 2 111 I3 | | |

R e PR e

The total space is eight slots, so dk_usable is USABLE_FRACTION(8), calculated as 8 x
2/ 3=5. Thatis, for a newly created dictionary, dk_usable equals 5. Each time a new key
is added via insert _to emptydict() or insertdict(), dk_usable decreases by 1. In our
example with three keys, dk_usable is 5 - 3 = 2, indicating that there is room for two more
elements before a resize is required.
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Thus, dk_usable is essentially a counter that tells you how many more elements
you can add without resizing. When dk_usable drops to 0 or below, the load factor has
exceeded 2/3, and it’s time to allocate more memory.

But why 2/3? Where does this value come from? It’s not explicit in the code, but since
Python’s dictionary has a long history, it’s likely that 2/3 was empirically determined by
the core developers via experimentation and performance testing.

Now that we understand these relationships, let’s look at how these values change as

elements are added:

Fommmmm - Fommmmmm - Fommmmm - Fommmmm - +
| dk_size | dk_entries | dk usable | o I
e T Fommmmm - e +
I 8 I 3 I 2 l 0.375 |
e el ettt et +
I 8 I 4 I 1 0.5 I
Fommmmm - Fommmmmm - Fommmmm - e +
I 8 I 5 I 0 | 0.625 |
e e T Fommmm - e +

Originally eight slots, now five are used, and dk_usable is 0; it’s almost time to
expand. If you add another element:

Fommmmm - Fommmmmm - Fommmmm - e +
| dk_size | dk_entries | dk usable | o I
e T Fommmmm - e +
I 8 I 3 I 2 ' 0.375 |
e el ettt et +
I 8 I 4 I 1 | 0.5 I
Fommmmm - Fommmmmm - Fommmmm - Fommmmm - +
I 8 I 5 I 0 | 0.625 |
e T Fommmmm - e +
| 16 I 6 I 4 I 0.375 |
e el ettt et +

The overall dictionary size increases to 16 slots. Why 16? We'll calculate that in a
moment. Since one more element was added, dk_entries increases from 5 to 6. As dk _
size has grown, dk_usable increases as well, and the load factor (a) drops. By expanding
capacity, a is kept below 2/3, thus reducing collision risk.
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How Much Space to Allocate?

Now we know that when more than roughly 2/3 of the dictionary is filled, Python will

request more memory when new elements are added. But by how much should it

grow each time? If the allocation is too large, you end up wasting memory; if too small,

frequent expansions hurt performance. Not only does expanding allocate new memory,

but it must also rehash and relocate all elements, which is computationally expensive.
So what'’s Python’s resizing strategy? The insertion _resize() function

provides a clue:

// file: Objects/dictobject.c

static int
insertion resize(PyInterpreterState *interp, PyDictObject *mp, int unicode)

{
return dictresize(interp, mp, calculate log2 keysize(GROWTH RATE(mp)),

unicode);

The macro GROWTH_RATE (mp) is self-descriptive—let’s see how it’s defined:
// file: Objects/dictobject.c
#define GROWTH RATE(d) ((d)->ma_used*3)

This multiplies the number of used slots by 3. Let’s use our earlier example:

$o-- - et et $ommmm - +
| dk_size | dk entries | dk usable | o I
Fommmmmm - Fommmm e e Fommmmmm oo +
I 8 I 4 I 1 | 0.5 I
e et e et tommmm e e +
I 8 [ 5 I 0 | 0.625 |
$---mmm - - dommmmm - et e +

Assume five elements are currently used. Then, GROWTH_RATE () yields 5x3 =15,
meaning that on resizing, the requested capacity is 15. But since Python dictionary sizes
must be powers of 2, this is rounded up to 16 slots.
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Now with 16 slots, as you continue adding elements, when dk_entries reaches 10,
dk_usable once again hits 0. On resizing, you'd request 10 x 3 = 30 slots, but this will be
rounded up to 215 = 32 slots.

With this logic, each expansion increases capacity at roughly a twofold pace. If you
reviewed the source code, you'd notice that the GROWTH_RATE has changed over Python

versions:
e GROWTH_RATE was set to used*4 up to version 3.2.
e GROWTH_RATE was set to used*2 in version 3.3.0
e GROWTH_RATE was set to used*2 + capacity/2 in 3.4.0-3.6.0.

Initially, it was times 4, then 2, then 2 plus half the previous capacity, and currently
it’s times 3. These heuristics are undoubtedly informed by extensive experimentation
and performance testing. This is where the value of mathematics and algorithms

becomes crystal clear!

Returning Memory: Does It Happen?

Now we know that Python requests more memory as the dictionary capacity is exceeded.
But what if elements are removed—Will Python hand back the spare memory? In real
life, when fuel prices rise, commodity prices often go up too, but do they fall when fuel
becomes cheaper? Well, you know the answer.

For example, if the dictionary expands from 8 to 16 slots and then you delete all
elements, will it shrink back to 8? The answer is no. A Python dictionary will not release
extra space just because the number of elements drops. If it did, this would require
recalculating capacity with every deletion, which would impact performance. Here's a

code sample to illustrate:
from sys import getsizeof

heroes = {
"Frieren": "Frieren",
"Himmel": "Himmel",
"Heiter": "Heiter",
"Fern": "Fern",
"Stark": "Stark",
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print(getsizeof(heroes))

# Add one-this will trigger capacity expansion
heroes["Eisen"] = "Eisen"
print(getsizeof(heroes))

# Delete three

del heroes["Eisen"]

del heroes["Stark"]

del heroes["Fern"]
print(getsizeof(heroes))

After originally adding five elements, inserting one more causes the dictionary
to expand from 8 to 16 slots. However, deleting three elements does not reduce the
allocated memory. On my machine, it outputs:

184
272
272

If you really want to shrink a dictionary’s capacity, there are a couple of ways. You
can call the . clear () method, which will release the memory. For details, you can check
the PyDict_Clear() function in Objects/dictobject.c, where you'll see that after
clearing elements, memory is also freed.

Alternatively, you can reassign with heroes = {}—this makes the variable point
to a brand-new empty dictionary, and the original will be garbage-collected in due
course. However, use cases where you need to be so strict about space are rare, and
with Python’s heavy use of small dictionaries, writing code this way can become
unnecessarily verbose.
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CHAPTER 17

The Tuple Object and Its
Immutability

In Python, a tuple is an immutable data structure designed to store multiple elements,
which can be accessed using index values. Tuples are similar to lists, but with one key
difference: once a tuple is created, its elements cannot be added, deleted, or modified.
This chapter explores how tuples are implemented and highlights some of their
interesting characteristics.

Tuple Design

// file: Include/cpython/tupleobject.h

typedef struct {
PyObject VAR HEAD
PyObject *ob item[1];
} PyTupleObject;

If you've been following along, this structure should look familiar. The
PyTupleObject structure starts with a PyObject VAR _HEAD, much like lists, and includes
an ob_item member used to store the tuple’s elements. But why is this member defined
asob_item[1] instead of the **ob_items seen in PyListObject? What does this [1]

signify?
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This is a C programming technique known as a “Flexible Array Member.” With this
approach, the final member of the structure can be an array of unknown size. While it is
written as if there were only one element, it can actually accommodate any number of
elements in contiguous memory. This design allows tuples to occupy continuous blocks
in memory, making element access more efficient. Visually, it looks something like this:

e LT E PP +
| PyObject VAR_HEAD |
R s +
| ob_item[0] I
R +
| ob item[1] I
e LT E PP +
| ob_item[2] I
R s +
I I
R +

Unlike lists, which use **ob_items, tuples do not require dynamic resizing, so this
simpler design improves execution efficiency.

Creating a Tuple

To create a tuple, look for the tp_new member in PyTuple_ Type, which points to the
tuple new() function:

// file: Objects/clinic/tupleobject.c.h

static PyObject *
tuple new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{

PyObject *return value = NULL;

PyTypeObject *base tp = &PyTuple_ Type;

PyObject *iterable = NULL;
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// ... omitted ...
if (PyTuple GET SIZE(args) < 1) {
goto skip optional;

}
iterable = PyTuple GET ITEM(args, 0);
skip optional:
return value = tuple new impl(type, iterable);

exit:
return return value;

After skipping some parameter checks, the first highlight is the PyTuple GET_ITEM()
macro, which expands to:

// file: Include/cpython/tupleobject.h
#define PyTuple GET ITEM(op, index) (_PyTuple CAST(op)->ob item[(index)])

This macro is used to access elements within a tuple. It directly accesses the ob_item
array and returns the element at the requested index. This macro is commonly used
wherever tuple elements are accessed and forms a core part of tuple operations.

The next key function is tuple _new_impl(), which actually creates the tuple:

// file: Objects/tupleobject.c

static PyObject *
tuple new_impl(PyTypeObject *type, PyObject *iterable)
{
if (type != &PyTuple Type)
return tuple subtype new(type, iterable);

if (iterable == NULL) {

return tuple_get_empty();
}

else {
return PySequence Tuple(iterable);

171



CHAPTER 17  THE TUPLE OBJECT AND ITS IMMUTABILITY

There are two main branches here. The first checks if the type is a subclass of tuple.
In Python, you might see:

class HelloTuple(tuple):
pass

If this is the case, the function calls tuple subtype new(). This function ultimately
still calls tuple new_impl(), just with different parameters. This setup allows subclasses
of tuple to modify or extend tuple creation behavior as needed.

If you're creating a standard tuple, the function checks whether to create an empty
tuple or one with elements. Let’s first look at how empty tuples are created in tuple

get_empty().

Empty Tuples
// file: Objects/tupleobject.c

static inline PyObject *
tuple get empty(void)
{
return Py NewRef(& Py SINGLETON(tuple empty));

Here, the Py SINGLETON() macro defines a global singleton object that is never
collected by the garbage collector. This ensures that every request for an empty tuple
returns the same object, avoiding redundant creation. Therefore, comparing two empty
tuples using the is keyword in Python yields True:

>»>a = ()
>> b = ()
>»> aisb
True

Both variables point to the same object, which is initialized when the Python
interpreter starts.

172



CHAPTER 17  THE TUPLE OBJECT AND ITS IMMUTABILITY

Non-empty Tuples

Here, “non-empty” means creating a tuple with elements, such as passing data when
calling the tuple() class:

>>> t1 = tuple([1, 2, 3])
>»> t1
(1, 2, 3)
>>> t2 = tuple("hello")
>>> t2
(Ihl) 'e'J l]'l) ll') '0')
>>>
As long as an iterable is passed, Python will convert it into a tuple. Let’s look at how
PySequence_Tuple() achieves this. Since the function is lengthy, we'll review it in parts:

// file: Objects/abstract.c

PyObject *
PySequence Tuple(PyObject *v)
{

// ... omitted ...

if (PyTuple CheckExact(v)) {
return Py NewRef(v);

}
if (PyList CheckExact(v))
return PylList AsTuple(v);

// ... omitted ...

Two checks are performed here. If the incoming object is already a tuple, it simply
returns a new reference to it rather than creating a new tuple. So:

>»>a = (1, 2, 3)
>>> b = tuple(a)
>> ais b

True
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If the object is a list, PyList AsTuple() is called, converting the list to a tuple. The
key implementation happens in _PyTuple FromArray():

// file: Objects/tupleobject.c

PyObject *
_PyTuple FromArray(PyObject *const *src, Py ssize t n)
{

if (n == 0) {

return tuple_get_empty();
}

PyTupleObject *tuple = tuple alloc(n);
if (tuple == NULL) {
return NULL;
}
PyObject **dst = tuple->ob_item;
for (Py ssize t i =0; i < n; i++) {
PyObject *item = src[i];
dst[i] = Py NewRef(item);
}
_PyObject GC_TRACK(tuple);
return (PyObject *)tuple;

Conversion here is simply a loop that copies references from the source to the ob
item array, thus creating the tuple.

Deallocation Mechanism

When a tuple is no longer needed—for example, when its reference count drops
to zero—the system should reclaim its memory. This is managed by the function
referenced by the tp_dealloc member of PyTuple Type, namely, tupledealloc():

// file: Objects/tupleobject.c

static void
tupledealloc(PyTupleObject *op)
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if (Py SIZE(op) == 0) {
if (op == & Py SINGLETON(tuple empty)) {
return;

}

PyObject GC_UnTrack(op);
Py TRASHCAN BEGIN(op, tupledealloc)

Py ssize t i = Py SIZE(op);
while (--i >= 0) {
Py XDECREF(op->ob_item[i]);
}
if (!maybe freelist push(op)) {
Py TYPE(op)->tp free((PyObject *)op);
}

Py TRASHCAN_END

There are two notable points here. First, when the tuple to be deallocated is the

singleton empty tuple, it skips memory reclamation, as this tuple is global and never

destroyed. The second point is the call to the maybe freelist push() function:

// file: Objects/tupleobject.c

static inline int
maybe freelist push(PyTupleObject *op)

{

PyInterpreterState *interp = PyInterpreterState GET();
if (Py SIZE(op) == 0) {
return O;
}
Py ssize t index = Py SIZE(op) - 1;
if (index < PyTuple NFREELISTS
88 STATE.numfree[index] < PyTuple MAXFREELIST
88 Py IS TYPE(op, &PyTuple Type))
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{
op->ob_item[0] = (PyObject *) STATE.free list[index];
STATE.free list[index] = op;
STATE.numfree[index]++;
OBJECT STAT INC(to_ freelist);
retuxrn 1;
}
return O;

Recall from the chapter on floats that Python uses a “Free List” mechanism for
memory optimization. The maybe freelist push() function manages such reuse for
tuples. If the tuple is empty, it is not managed by the free list.

If:

1. The number of elements in the tuple is less than
PyTuple NFREELISTS (usually set to 20),

2. The objectis indeed a tuple,

3. The available space in the free list is not yet over
PyTuple MAXFREELIST (commonly 2,000),

then the tuple is added to the free list for possible reuse. In other words, for tuples with
fewer than 20 elements, Python does not immediately free their memory; instead, it
places them in a free list.

Here’s some code to demonstrate this behavior:

>>> t1 = tuple(range(20))
>>> id(t1)
4339988768

>>> del t1

>>> t2 = tuple(range(20))
>>> id(t2)

4339988768

>>> t3 = tuple(range(21))
>>> id(t3)

4306827552
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>>> del t3
>>> t4 = tuple(range(21))
>>> id(t4)
4306827552

As shown, when the tuple has 20 or fewer elements, deleting it and then creating

another tuple with the same size and values gives the same id, indicating Python reused

the same tuple from the free list. If the tuple has more than 20 elements, Python creates a

new object instead.

Common Tuple Operations
Modifying Tuples

Tuples are immutable, meaning you cannot modify their elements. This is similar
to strings. The reason is straightforward: the tuple _as _mapping member related to
modification is set to NULL in PyTuple Type:

// file: Objects/tupleobject.c

static PyMappingMethods tuple as mapping = {
(lenfunc)tuplelength,
(binaryfunc)tuplesubscript,
0

b

Reading via tuplesubscript() is fine, but since the modification function is NULL,

attempts at item assignment will result in an error:

>»>t=1(9,5, 2, 7)
>>> t[o] = "x"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
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Tuple Unpacking

In Python, you can “unpack” a tuple, assigning its elements to multiple variables at once:

t=10(9,52,7)
a, b, ¢, d=t

How does this work? Looking at the bytecode for this snippet, tuple unpacking
corresponds to the UNPACK_SEQUENCE opcode. Here is the relevant code:

// file: Python/bytecodes.c

inst(UNPACK_SEQUENCE, (unused/1, seq -- unused[oparg])) {

#if ENABLE_SPECIALIZATION

_PyUnpackSequenceCache *cache = (_PyUnpackSequenceCache *)next instr;

if (ADAPTIVE COUNTER IS ZERO(cache->counter)) {
next_instr--;
_Py Specialize UnpackSequence(seq, next instr, oparg);
DISPATCH_SAME_OPARG();

}

STAT _INC(UNPACK SEQUENCE, deferred);

DECREMENT ADAPTIVE COUNTER(cache->counter);

#tendif /* ENABLE SPECIALIZATION */

PyObject **top = stack pointer + oparg - 1;

int res = unpack iterable(tstate, seq, oparg, -1, top);

DECREF_INPUTS();

ERROR IF(res == 0, error);

Both tuples and lists use UNPACK_SEQUENCE, but distinguishing between them is
handled in Py Specialize UnpackSequence():

// file: Python/specialize.c

void
_Py Specialize UnpackSequence(PyObject *seq, Py CODEUNIT *instr,
int oparg)
{
// ... omitted ...
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_PyUnpackSequenceCache *cache = (_PyUnpackSequenceCache *)(instr + 1);
if (PyTuple CheckExact(seq)) {
// ... omitted ...
if (PyTuple GET SIZE(seq) == 2) {
instr->op.code = UNPACK_SEQUENCE_TWO TUPLE;
goto success;
}
instr->op.code = UNPACK_SEQUENCE_TUPLE;
goto success;
}
if (PyList CheckExact(seq)) {
// ... omitted ...
instr->op.code = UNPACK SEQUENCE LIST;
goto success;

}
// ... omitted ...

Here, you can see that different opcodes are chosen. Specifically, if the tuple has
exactly two elements, the specialized UNPACK_SEQUENCE_TWO TUPLE opcode is used;
otherwise, UNPACK_SEQUENCE_TUPLE is used for other tuple lengths. This raises the
question: Has Python optimized unpacking for two-element tuples? Let’s compare the
two opcodes:

// file: Python/bytecodes.c

inst(UNPACK_SEQUENCE TUPLE, (unused/1, seq -- values[oparg]l)) {
// ... omitted ...
PyObject **items = PyTuple ITEMS(seq);
for (int i = oparg; --i >= 0; ) {
*values++ = Py NewRef(items[i]);

}
DECREF_INPUTS();

For general tuple unpacking, the code loops (in reverse order) over the tuple’s ob_
item array, copying each element. The loop is reversed, matching the stack’s “last in, first
out” behavior; for example, fort = (9, 5, 2, 7):
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PyTupleObject itself

The reversed loop ensures elements are placed correctly on the stack. For two-
element tuples, the code becomes even simpler:

// file: Python/bytecodes.c

inst (UNPACK_SEQUENCE_TWO TUPLE, (unused/1, seq -- values[oparg])) {
// ... omitted ...
values[0] = Py NewRef(PyTuple GET ITEM(seq, 1));
values[1] = Py NewRef(PyTuple GET ITEM(seq, 0));
DECREF_INPUTS();

With just two elements, Python skips the loop and assigns both values directly,
illustrating a targeted optimization.
A quick look at list unpacking:

// file: Python/bytecodes.c

inst(UNPACK_SEQUENCE_LIST, (unused/1, seq -- values[oparg])) {
// ... omitted ...
PyObject **items = PylList ITEMS(seq);
for (int i = oparg; --i >= 0; ) {
*values++ = Py NewRef(items[i]);

}
DECREF_INPUTS();
}
The process is nearly the same, except it uses the list’s ob_item array instead of the
tuple’s.

If you need any further clarification or see sections that reference or depend on
earlier context, please let me know so I can ensure the translation stays faithful to your
intended meaning.
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CHAPTER 18

Inside the Python VM:
Code Objects

The Python Virtual Machine (PVM) is the core that runs behind Python code. It is
responsible for interpreting and executing every line of code we write. Everything

from converting bytecode to actual operations, creating and destroying objects, to
memory management falls under its domain. In the following chapters, I will use simple
programs to explore the operating principles of the Python Virtual Machine.

Previously, we introduced the process of starting the interpreter—from reading files
into memory, converting to AST, then to bytecode, and finally handing over to the virtual
machine for execution. So, let’s begin with functions!

In Python, functions are defined using the def keyword. This chapter will focus
on how functions are defined in CPython, what interesting things are hidden inside
function objects, and what actually happens when a function is executed.

Functions Are Also Objects

In Python, functions are also objects. Since they are objects, we should be able to find

their corresponding type structure:

PyTypeObject PyFunction Type = {
PyVarObject HEAD INIT(&PyType Type, 0)

"function”,

// ... omitted ...

(reprfunc)func_repr, /* tp repr */

0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
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0, /* tp_hash */
PyVectorcall Call, /* tp_call */

0, /* tp str */

// ... omitted ...

0, /* tp dict */
func_descr_get, /* tp descr get */
0, /* tp descr set */
offsetof(PyFunctionObject, func_dict), /* tp dictoffset */
0, /* tp init */

0, /* tp_alloc */
func_new, /* tp _new */

};

It can be seen that this type does not implement many functionalities. For instance,
the three tp_as_member variables are all zero, which means it cannot be operated
as a number, sequence, or mapping type. This is reasonable—functions neither have
nor need behaviors like strings, lists, dictionaries, or tuples. They are only responsible
for their core job: accepting arguments, executing the function, and returning the
appropriate value.

That said, the PyFunctionObject type structure contains quite a few members:

// file: Include/cpython/funcobject.h

typedef struct {
PyObject HEAD
Py COMMON_FIELDS(func )

PyObject *func_doc; /* The __doc__ attribute, can be
anything */

PyObject *func dict; /* The _dict  attribute, a dict
or NULL */

PyObject *func weakreflist; /* List of weak references */

PyObject *func_module; /* The __module  attribute, can be

anything */
PyObject *func_annotations; /* Annotations, a dict or NULL */
PyObject *func_typeparams; /* Tuple of active type variables
or NULL */
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vectorcallfunc vectorcall;

uint32_t

func_version;

} PyFunctionObject;
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If you expand Py COMMON_FIELDS(func_), the complete PyFunctionObject looks

like this:

// file: Include/cpython/funcobject.h

typedef struct {

PyObject |

HEAD

// Py_COMMON_FIELDS

PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject
PyObject

PyObject
PyObject

PyObject
PyObject

PyObject
PyObject

*func_globals;
*func_builtins;
*func_name;
*func_qualname;
*func_code;
*func_defaults;
*func_kwdefaults;
*func_closure;

*func_doc;
*func_dict;

*func_weakreflist;
*func_module;

*func_annotations;
*func_typeparams;

vectorcallfunc vectorcall;

uint32_ t

func_version;

} PyFunctionObject;

/* A code object, the _code  attribute */

/* NULL or a tuple */
/* NULL or a dict */
/* NULL or a tuple of cell objects */

/* The __doc__ attribute, can be
anything */

/* The _dict  attribute, a dict
or NULL */

/* List of weak references */

/* The __module  attribute, can be
anything */

/* Annotations, a dict or NULL */
/* Tuple of active type variables

or NULL */

183



CHAPTER 18  INSIDE THE PYTHON VM: CODE OBJECTS

Some members are easy to guess just by their names. Notably, the func_code
member is annotated as a code object; we've seen this several times already, and it is
indeed the core of the function. In Python, you can think of a function as a named box:
when you invoke the function using its name, essentially, you are handing over the code
object inside the function object to the virtual machine for execution. The question is,
how and when is this code object created? Let’s try writing a simple function to find out.

Preparing to Create a Function

Let’s start with a simple greeting function:

def greeting(name):
print(f"Hello, {name}")

The corresponding bytecode looks like this:

1 2 LOAD_CONST 0 (<code object>)
4 MAKE_FUNCTION 0
6 STORE_NAME 0 (greeting)
8 RETURN_CONST 1 (None)

It seems that the MAKE_FUNCTION instruction is responsible for creating the function.
The name of the instruction is pretty self-explanatory. However, right before MAKE
FUNCTION, there is a LOAD_CONST instruction that loads a code object. We've seen similar
instructions before, indicating that this code object is created during the compilation
phase—that is, in the process of converting the AST into bytecode. Only then can it be
“loaded” here and passed into the function via the MAKE_FUNCTION instruction. In our
earlier discussion of the process from AST to bytecode, we traced the PyAST Compile()
function, whose return value is indeed a code object.

It looks like to understand functions, we first need to spend some time studying this
code object. So, let’s temporarily set functions aside and take a look at what a code object
actually is.

184



CHAPTER 18  INSIDE THE PYTHON VM: CODE OBJECTS

Code Object

The name “code object” already tells us that it is an object. Following CPython’s naming
conventions, it’s not hard to guess that this object is called PyCodeObject. Checking the
source code, we find it is defined as a macro:

// file: Include/cpython/code.h

#define PyCode DEF(SIZE) { \
PyObject VAR HEAD \
\
// ... omitted ...
/* The hottest fields (in the eval loop) are grouped here at the top. */
PyObject *co_consts; /* list (constants used) */
PyObject *co names; /* list of strings (names used) */

PyObject *co_exceptiontable; /* Byte string encoding exception handling
table */

- - -

// ... omitted ...

It doesn’t really matter whether it is a structure or macro, but this structure is quite
large. At the beginning of the Python/compile. c file, there is a comment that reads:

The primary entry point is PyAST Compile(), which returns a
PyCodeObject. The compiler makes several passes to build the code
object:
1. Checks for future statements. See future.c
2. Builds a symbol table. See symtable.c.
3. Generate an instruction sequence. See compiler mod() in this file.
4. Generate a control flow graph and run optimizations on it. See
flowgraph.c.
5. Assemble the basic blocks into final code. See optimize and_
assemble() in this file, and assembler.c.

First, it checks for “future statements,” i.e., lines like from _ future  import ...
The so-called “future module” mainly exists to allow Python 2 code to run on Python 3.
This step ensures code compatibility. Next, it builds the symbol table, which records
information about variables, functions, classes, etc., used in the program.
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Then, the AST is converted to intermediate code, followed by control flow analysis
and optimization, which gets a bit more complicated. However, the final assembly
process happens in the optimize and_assemble() function in Python/compile.c. The
code object is probably put together at this stage, so let’s start tracing from here:

// file: Python/compile.c

static PyCodeObject *
optimize and_assemble(struct compiler *c, int addNone)

{
struct compiler unit *u = c->u;
PyObject *const_cache = c->c_const_cache;
PyObject *filename = c->c_filename;
int code flags = compute code flags(c);
// ... omitted ...
return optimize and assemble code unit(u, const cache, code flags,
filename);
}

As expected, this function creates and returns a PyCodeObject. Let’s continue
following optimize and_assemble code unit():

// file: Python/compile.c

static PyCodeObject *
optimize and assemble code unit(struct compiler unit *u, PyObject
*const_cache,

int code flags, PyObject *filename)

{
// ... omitted ...
co = PyAssemble MakeCodeObject(&u->u_metadata, const cache, consts,
maxdepth, &optimized instrs,
nlocalsplus,
code flags, filename);
// ... omitted ...
}
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This function is quite lengthy, but most of the initial part is preparatory work. Finally,
the PyAssemble MakeCodeObject() function assembles the gathered information and
creates the code object:

// file: Python/assemble.c

PyCodeObject *

_PyAssemble MakeCodeObject( PyCompile CodeUnitMetadata *umd, PyObject

*const_cache,
PyObject *consts, int maxdepth, instr sequence
*instrs, int nlocalsplus, int code flags,
PyObject *filename)

PyCodeObject *co = NULL;

struct assembler a;
int res = assemble emit(&a, instrs, umd->u_firstlineno, const cache);
if (res == SUCCESS) {
co = makecode(umd, 8a, const cache, consts, maxdepth, nlocalsplus,
code_flags, filename);
}
assemble free(8a);
return co;

This is it! The makecode () function is where the code object is actually created:
// file: Python/assemble.c

static PyCodeObject *
makecode(_PyCompile CodeUnitMetadata *umd, struct assembler *a, PyObject
*const_cache,
PyObject *constslist, int maxdepth, int nlocalsplus, int
code_flags, PyObject *filename)

PyCodeObject *co = NULL;

PyObject *names = NULL;
PyObject *consts = NULL;
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PyObject *localsplusnames = NULL;

// ... omitted ...
consts = PylList AsTuple(constslist); /* PyCode New requires a tuple */

// ... omitted ...
localsplusnames = PyTuple New(nlocalsplus);

struct PyCodeConstructor con = {
// ... omitted ...
.consts = consts,
.names = names,
.localsplusnames = localsplusnames,

};

// ... omitted ...
co = PyCode New(&con);

// ... omitted ...
return co;

There are a few key points in this function: constants and local variables used here

are stored as tuples, and PyCode_New() is called to create the code object:

// file: Objects/codeobject.c

PyCodeObject *
_PyCode_New(struct PyCodeConstructor *con)

{
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// ... omitted ...
Py ssize t size = PyBytes GET SIZE(con->code) / sizeof( Py CODEUNIT);
PyCodeObject *co = PyObject NewVar(PyCodeObject, &PyCode Type, size);
if (co == NULL) {

Py XDECREF(replacement locations);

PyErr NoMemory();

return NULL;



CHAPTER 18  INSIDE THE PYTHON VM: CODE OBJECTS

init code(co, con);
Py XDECREF(replacement locations);
return co;

You can see that this function creates a PyCodeObject and initializes it with the
previously collected information using the init code() function:

// file: Objects/codeobject.c

static void
init_code(PyCodeObject *co, struct PyCodeConstructor *con)
{
// ... omitted ...
co->co_filename = Py NewRef(con->filename);
co->co_name = Py NewRef(con->name);
co->co_qualname = Py NewRef(con->qualname);
co->co_flags = con->flags;

// ... omitted ...
co->co_consts = Py NewRef(con->consts);
co->co_names = Py NewRef(con->names);

// ... omitted ...

That completes the creation of the code object. Let’s try inspecting it in the REPL:

$ python -i hi.py

>>> greeting. code

<code object greeting>

>>> greeting. code__.co_name
'‘greeting’

>>> greeting. code_ .co consts
(None, 'Hello, ')
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In Python, you can use __code__ to access a function’s code object. The values
initialized earlier, such as co_name and co_consts, are all accessible through this
code object. In this example, we can see that the function’s name is greeting and the
constants used in the function are None and 'Hello, '

The constant 'Hello, ' is easy enough to understand, but can you guess where None

is used inside the function?
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CHAPTER 19

Inside the Python VM:
Function Objects

In the previous chapter, we got a general overview of Code Objects wrapped inside
functions. Code Objects are created during the compilation process—when a program
runs, they are loaded via the LOAD_CONST instruction and wrapped into functions.
However, unlike Code Objects, functions are not pre-built; they are created during
runtime through the MAKE_FUNCTION instruction. In this chapter, let’s take a closer look at
how Python function objects work.

Creating Function Objects

A function object in Python is defined as follows:
// file: Include/cpython/funcobject.h

typedef struct {
PyObject HEAD

// Py _COMMON_FIELDS

PyObject *func_globals;

PyObject *func_builtins;

PyObject *func_name;

PyObject *func_qualname;

PyObject *func_code; /* A code object, the _code  attribute */
PyObject *func_defaults; /* NULL or a tuple */

PyObject *func_kwdefaults; /* NULL or a dict */

PyObject *func_closure; /* NULL or a tuple of cell objects */

PyObject *func_doc; /* The __doc__ attribute, can be
anything */
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PyObject *func_dict; /* The _dict  attribute, a dict
or NULL */

PyObject *func weakreflist; /* List of weak references */

PyObject *func_module; /* The __module  attribute, can be

anything */
PyObject *func_annotations; /* Annotations, a dict or NULL */
PyObject *func_typeparams; /* Tuple of active type variables
or NULL */
vectorcallfunc vectorcall;
uint32_t func_version;
} PyFunctionObject;

Among these, func_code is already familiar to us as the Code Object. To access it
directly in Python, you can use the __code__ attribute. So, how are function objects
actually created? As we saw in the previous chapter, function objects are produced
by the MAKE_FUNCTION instruction. The function object contains the function’s name,
parameters, default values, and code. Let’s see what happens under the hood with this

instruction:
// file: Python/bytecodes.c

inst(MAKE_FUNCTION, (defaults if (oparg & oxo1),
kwdefaults if (oparg & 0x02),
annotations if (oparg & 0x04),
closure if (oparg & 0x08),
codeobj -- func)) {

PyFunctionObject *func_obj = (PyFunctionObject *)
PyFunction New(codeobj, GLOBALS());

// ... omitted ...

if (oparg & oxo08) {
assert(PyTuple CheckExact(closure));
func_obj->func_closure = closure;

}
// ... omitted ...
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We can see that this instruction creates a PyFunctionObject, but what about the
series of bitwise operations with oparg that follow? What exactly is oparg?

What Do the Parameters Look Like?

Actually, oparg is determined at compile time. Let’s look again at the compiled bytecode

instructions:
1 2 LOAD_CONST 0 (<code object>)
4 MAKE_FUNCTION 0
6 STORE_NAME 0 (greeting)
8 RETURN_CONST 1 (None)

The 0 after the MAKE_FUNCTION instruction is the oparg. Its main purpose is to let the
virtual machine know what attributes this function object possesses. oparg is an eight-bit
integer, but only the lowest four bits are currently in use. Different functions may have
different attributes. For example, in the original example with simple parameters, the
oparg is 0. If we change the function to:

def greeting(name="Kitty"):
print(f"Hello, {name}")

This function has a default parameter, so its oparg is 1 (i.e., 0001). If the function is
further modified to:

def greeting(name: str):
print(f"Hello, {name}")

Here, we've added a type annotation, so the oparg becomes 4 (i.e., 0100). If we
combine both:

def greeting(name: str = "Kitty"):
print(f"Hello, {name}")

Now, oparg is 5 (i.e., 0101), which is the result of a bitwise operation between 0001
and 0100. Using oparg, the virtual machine can determine what kind of attributes this
function object should have.

The series of bitwise operations in the latter half of the MAKE_FUNCTION instruction
handles exactly this.
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Accessing Function Attributes

Why is it that accessing __name__ on a function returns its name, __code__ gives us the
internal Code Object, and __annotations__ provides the type annotations? How are
these attributes mapped to the underlying function object?

Recall in the previous chapter, we looked at the PyFunction Type. Although it
doesn’t have members like tp_as_, to access properties via attributes, we need to look at
the tp_getset member, which corresponds to func_getsetlist:

// file: Objects/funcobject.c

static PyGetSetDef func_getsetlist[] = {
{" code ", (getter)func_get code, (setter)func_set code},
{" defaults ", (getter)func get defaults,
(setter)func_set defaults},
{"__kwdefaults ", (getter)func_get kwdefaults,
(setter)func_set kwdefaults},
{"__annotations ", (getter)func_get annotations,
(setter)func_set annotations},
" dict ", PyObject GenericGetDict, PyObject GenericSetDict},
" name_ ", (getter)func_get name, (setter)func_set name},
__qualname_ ", (getter)func_get qualname, (setter)func_set qualname},
__type params ", (getter)func_get type params,
(setter)func_set type params},
{NULL} /* Sentinel */

{
{
{II
{

b5
Here, the getter and setter functions are used to retrieve and set these attributes.
Let’s look up the func_get code function correspondingto _code_:

// file: Objects/funcobject.c

static PyObject *
func_get code(PyFunctionObject *op, void *Py UNUSED(ignored))

{
if (PySys Audit("object. getattr ", "0s", op, " code ") < 0) {
return NULL;
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return Py NewRef(op->func_code);

It’s straightforward: it simply returns the func_code member of the
PyFunctionObject structure. Other attributes follow a similar pattern. For example, the
__hame__ attribute:

// file: Objects/funcobject.c

static PyObject *
func_get name(PyFunctionObject *op, void *Py UNUSED(ignored))
{

return Py NewRef(op->func_name);

Given that there’s a setter here as well, does this mean we can dynamically change
the Code Object inside a function during runtime, thereby altering its behavior? Let’s
giveita try:

def greeting(name):
print(f"Hello, {name}")
greeting("Kitty") # Hello, Kitty

secret object = compile('print("Hey Hey!")', _name , "exec"
greeting. code = secret object
greeting()

However, not just anything can be assigned to __code__. If you're interested, check
out the func_set_code function, which contains some checks. Nevertheless, running
the code above will indeed print Hey Hey!—so it is possible to do this, though it’s hard to
think of a practical use case where you'd actually need it.

Calling a Function

Previously, when examining the PyType Type structure, we saw a tp_call member.
Attempting to use parentheses () on an object triggers this member. Function objects
also have this member. Let’s take a look at the tp_call member of PyFunction_Type; it
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points to the PyVectorcall Call() function. Even before looking at the source code,
let’s consider the name: “Vector” typically means an array or sequence, but what does
this have to do with calling functions?

What Is “Vectorcall”?

In earlier versions of Python, calling a function required packing positional arguments
into a tuple and keyword arguments into a dictionary. This process incurred overhead
from extra memory and operations. Starting from Python 3.9, PEP 590 introduced a new
calling mechanism called “Vectorcall,” described as “a fast calling protocol for CPython.”
The Changelog of version 3.9 notes that this change improves performance for common
built-in types such as lists, tuples, dictionaries, and sets. In current versions, most objects
already support Vectorcall, though some third-party packages may still use the old tp_
call approach.

o PEP590: https://peps.python.org/pep-0590/

o Changelog: https://docs.python.org/3.9/whatsnew/
changelog.html

From the official documentation:
Changed in version 3.12:

The Py TPFLAGS_HAVE_VECTORCALL flag is now removed from a
class when the class’s call() method is reassigned. (This internally
sets tp_call only and thus may make it behave differently than the
vectorcall function.) In earlier Python versions, vectorcall should
only be used with immutable or static types.

This means if you implementa __call _method in your own class, the Py _TPFLAGS _
HAVE_VECTORCALL setting will be removed, causing the class to revert to the traditional
tp_call approach rather than using Vectorcall.

So, what exactly makes Vectorcall faster? Let’s take a look at the PyVectorcall _
Call() function:

// file: Objects/call.c
PyObject *
PyVectorcall Call(PyObject *callable, PyObject *tuple, PyObject *kwargs)
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PyThreadState *tstate = PyThreadState GET();
Py ssize t offset = Py TYPE(callable)->tp vectorcall offset;
// ... omitted ...

vectorcallfunc func;
memcpy (&func, (char *) callable + offset, sizeof(func));
if (func == NULL) {
_PyErr Format(tstate, PyExc_TypeError,
"'%.200s' object does not support vectorcall",
Py TYPE(callable)->tp name);
return NULL;

}
return PyVectorcall Call(tstate, func, callable, tuple, kwargs);

We can see that the function to execute is located by calculating the tp_vectorcall
offset member variable. This method improves performance because it directly
computes the location from PyObject HEAD by adding the offset. Essentially, this is
just pointer arithmetic, avoiding costly lookups via hash tables or other complex data
structures, which is much faster. Then, memcpy () is used to copy the function pointer,
and finally, it calls the internal API PyVectorcall Call():

// file: Objects/call.c

static PyObject *
_PyVectorcall Call(PyThreadState *tstate, vectorcallfunc func,
PyObject *callable, PyObject *tuple, PyObject *kwargs)

assert(func != NULL);

Py ssize t nargs = PyTuple GET SIZE(tuple);

if (kwargs == NULL Il PyDict GET_SIZE(kwargs) == 0) {
return func(callable, PyTuple ITEMS(tuple), nargs, NULL);
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PyObject *const *args;
PyObject *kwnames;

// ... omitted ...

PyObject *result = func(callable, args,
nargs | PY_VECTORCALL ARGUMENTS_ OFFSET,
kwnames) ;

_PyStack_UnpackDict Free(args, nargs, kwnames);

return Py CheckFunctionResult(tstate, callable, result, NULL);

It first checks if there are keyword arguments. If not, it takes a “fast path” and calls
func directly. If keyword arguments are present, it prepares them and then invokes func.

For most Python developers, these kinds of low-level optimizations are transparent.
In other words, we can just trust that Python keeps improving performance behind the
scenes. In most programming languages, when a function is called, it is pushed onto a
stack known as the call stack. Python has a similar mechanism, which we will cover in

more detail in the next chapter.
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CHAPTER 20

Inside the Python VM:
Frame Objects

In previous chapters, we briefly examined the structure of Code Objects and function
objects. We learned that each function contains a Code Object, which serves as the
smallest executable unit. Having traced from the lowest-level Code Object up to the
function, we will now continue this journey upward to see what happens during the
execution of a function.

In most programming languages, when a function is called, a new execution
environment is created. This environment contains all the essential information for that
function, such as local variables, global variables, and more. In some languages, this
execution environment is referred to as the “call stack,” while in Python, it is known as
the Frame Object. Every time a function is called, a new Frame is created. The Frame is
pushed onto a stack, and when the function completes execution, the Frame is removed.

Let’s take a look at what a Frame looks like in CPython, as well as the process of its
creation and destruction.

Frame Object

// file: Include/internal/pycore frame.h

struct frame {
PyObject_HEAD
PyFrameObject *f back;
struct PyInterpreterfFrame *f frame;
PyObject *f trace;
int f _lineno;
char f trace lines;
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char f_trace opcodes;

char f_fast _as locals;

PyObject * f frame data[1];
1

Aside from the common PyObject_ HEAD, there are several members worth
mentioning. The f_back member points to the previous Frame Object in the
stack, forming a linked list structure. The f frame member is a pointertoa _
PyInterpreterFrame type—more on this in a bit. There are also some members that
appear to be related to line numbers and, at the end, the f frame_data[1] member. We
encountered a similar design in earlier chapters—this is a Flexible Array Member used
for storing additional frame-related data.

Let’s take a look at the definition of PyInterpreterFrame:

// file: Include/internal/pycore frame.h

typedef struct PyInterpreterfFrame {
PyCodeObject *f code;
struct PyInterpreterfFrame *previous;
PyObject *f funcobj;
PyObject *f globals;
PyObject *f builtins;
PyObject *f locals;
PyFrameObject *frame obj;
_Py CODEUNIT *prev_instr;
int stacktop;
uint16 t return offset;
char owner;
PyObject *localsplus[1];
} _PyInterpreterFrame;

Here, we see the familiar Code Object f_code, and there is also a previous pointer,
linking to the previous structure and forming the execution stack. The f_funcobj
member points to the function object associated with this Frame.

You can also find f_globals, f builtins, and f_locals in this structure. As their
names suggest, these are used to store global variables, built-in variables, and local
variables, respectively.
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Finally, there’s localsplus, which is also a flexible array member. In fact, this is
where the local variables are actually stored. The f_locals member typically refers to a
dictionary structure, but most of the time, it remains NULL. The dictionary is only created
when there’s an explicit need to access local variables as a dictionary (e.g., when calling
the locals() function). When this happens, the values from localsplus are copied into
or populate the f_locals dictionary.

The Life Cycle of a Frame Object

When a Python function is called, it creates a new PyFrameObject and a
_PyInterpreterfFrame. The f_frame member of PyFrameObject points to the _
PyInterpreterFrame, and the frame_obj member of PyInterpreterFrame points back
to the PyFrameObject

To track how Frames are created, we usually start from the PyEval
EvalFrameDefault function. However, even before digging into the implementation,

there’s a warning comment at the very beginning:
_PyEval EvalFrameDefault() is a *big* function

And indeed, it’s not small—it spans roughly 350 lines:
// file: Python/ceval.c

PyObject* Py HOT_FUNCTION
_PyEval EvalFrameDefault(PyThreadState *tstate, PyInterpreterFrame *frame,
int throwflag)

{
// ... omitted ...

Here are some key points extracted from within:
// file: Python/ceval.c

PyObject* Py HOT FUNCTION
_PyEval EvalFrameDefault(PyThreadState *tstate, PyInterpreterFrame *frame,
int throwflag)
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{
_PyInterpreterfFrame entry frame;
_PyCFrame *prev_cframe = tstate->cframe;
// ... omitted ...
entry frame.f code = tstate->interp->interpreter trampoline;
entry frame.prev instr =
_PyCode CODE(tstate->interp->interpreter trampoline);
entry frame.stacktop = 0;
entry frame.owner = FRAME_OWNED BY CSTACK;
entry frame.return offset = 0;
entry frame.previous = prev_cframe->current frame;
frame->previous = &entry frame;
}

When entering, a new entry frame is created, and the current stack is obtained
through PyThreadState. Along the way, several members of entry frame are initialized.
By assigning the previous pointer of entry frame to the Frame in the stack, entry
frame is effectively pushed onto the stack. Finally, the previous member of frame is set
to point to this new entry frame. It’s a bit complicated, but this is how a new Frame is
created.

Next, there’s a code segment with rather complex formatting:

// file: Python/ceval.c

PyObject* Py HOT_FUNCTION
_PyEval EvalFrameDefault(PyThreadState *tstate, PyInterpreterFrame *frame,
int throwflag)
{

/* Start instructions */
#if IUSE_COMPUTED GOTOS

dispatch_opcode:

switch (opcode)

#endif
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#include "generated_cases.c.h"

// ... omitted ...
#if USE_COMPUTED GOTOS
TARGET _INSTRUMENTED LINE:
#else
case INSTRUMENTED LINE:
#endif
// ... omitted ...

} /* End instructions */

From /* Start instructions */to /* End instructions */, thisis alarge
switch statement, with many different case branches, each representing an instruction.
Take note of #include "generated cases.c.h", which pulls in a massive number of
generated opcodes. Tracing into this generated file, you'll see it’s nearly 4,800 lines long.
The comment at the beginning states how the file was produced:

// This file is generated by Tools/cases generator/generate cases.py
// from:

//  Python/bytecodes.c

// Do not edit!

It explicitly says not to edit this file manually. If interested, you can further explore
how generate_cases.py creates it.
Finally, let’s look at how the Frame Object is destroyed:

// file: Python/ceval.c

PyObject* Py HOT_FUNCTION
_PyEval EvalFrameDefault(PyThreadState *tstate, PyInterpreterFrame *frame,
int throwflag)
{
// ... omitted ...
exit unwind:
assert( PyErr Occurred(tstate));
_Py LeaveRecursiveCallPy(tstate);
assert(frame != &entry frame);

// GH-99729: We need to unlink the frame *before* clearing it:
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_PyInterpreterfFrame *dying = frame;

frame = cframe.current frame = dying->previous;

_PyEvalFrameClearAndPop(tstate, dying);

frame->return_offset = 0;

if (frame == &entry frame) {
/* Restore previous cframe and exit */
tstate->cframe = cframe.previous;
assert(tstate->cframe->current frame == frame->previous);
tstate->c_recursion remaining += PY _EVAL _C STACK UNITS;
return NULL;

}
// ... omitted ...

The exit_unwind label handles cleanup during the function’s exit. There’s also an
inline comment:

// GH-99729: We need to unlink the frame *before* clearing it:

This means that before breaking the link to a Frame, we must first detach it from the
Frame chain. These two lines:

// file: Python/ceval.c
_PyInterpreterFrame *dying = frame;

create anew _PyInterpreterFrame pointer, named dying, because it’s about to be
released. Next:

// file: Python/ceval.c
frame = cframe.current frame = dying->previous;

Frames are originally linked together; this line updates the subsequent Frame to
point to the Frame preceding dying, thereby removing dying from the chain.

Finally, the PyEvalFrameClearAndPop() function is called for cleanup.

From the moment a Frame is born, its fate is to lead a busy and brief life. Each time
you call a function, there’s an unseen Frame managing variables, executing instructions,
and handling unexpected situations, all so your program can run smoothly. Next time you
make a function call, don’t forget to thank these unsung heroes working behind the scenes!
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CHAPTER 21

Inside the Python VM:
Namespaces and Scopes

In Python, there are four types of scopes: LEGB (Local, Enclosing, Global, Built-in). In
this chapter, we will explore how these scopes are implemented within CPython.

Variable Scope

Let’s start with a simple example:

9527
1450

def hello():
X = 520
y = 1314
print(a, b, x, y)

hello()

Here, we have two global variables, a and b, and two local variables, x and y. When
the hello() function is called, the values of these variables will be printed. This behavior
is straightforward. However, let’s take a look at the bytecode instructions generated when
this code is executed:

// ... omitted ...

5 0 RESUME 0
6 2 LOAD_CONST 1 (520)
4 STORE_FAST 0 (x)
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7 6 LOAD CONST 2 (1314)
8 STORE_FAST 1 (y)
8 10 LOAD_ GLOBAL 1 (NULL + print)
20 LOAD GLOBAL 2 (a)
30 LOAD GLOBAL 4 (b)
40 LOAD FAST 0 (x)
42 LOAD FAST 1 (y)
44 CALL 4

// ... omitted ...

Notice that reading global variables like a uses LOAD_GLOBAL, while local variables
such as x and y are accessed using LOAD FAST. This indicates that Python employs
different mechanisms for accessing global and local variables.

Local Variables (L)

First, let’s see what the LOAD_FAST instruction does when reading local variables:
// file: Python/bytecodes.c

inst(LOAD_FAST, (-- value)) {
value = GETLOCAL(oparg);
assert(value != NULL);
Py INCREF(value);

This is quite straightforward. Now let’s look at how the GETLOCAL macro is defined:
// file: Python/ceval macros.h
#tdefine GETLOCAL(i) (frame->localsplus[i])

We talked about localsplus in the previous chapter. It is a member of the Frame
structure—a flexible array used to store local variables. Here, i is the index of the
variable, allowing us to fetch the value of the corresponding local variable. Thus, in the

lines above:

40 LOAD FAST 0 (x)
42 LOAD_FAST 1 (y)
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LOAD_FAST o fetches the value of x, and LOAD_FAST 1 fetches the value of y. But when
are these local variables stored? It appears that the preceding STORE_FAST instruction
handles this, so let’s trace it:

// file: Python/bytecodes.c

inst(STORE_FAST, (value --)) {
SETLOCAL (oparg, value);

Now, let’s see the definition of the SETLOCAL macro:
// file: Python/ceval macros.h

#tdefine SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \
GETLOCAL(i) = value; \
Py XDECREF(tmp); } while (0)

Also straightforward. This uses the GETLOCAL macro to fetch the original value from
localsplus, saves the new value at the designated index, and finally releases the old
value. This way, storing and retrieving local variables is accomplished. The pattern do
{ ... } while (0) maylook odd at first, but it allows multiple statements to be placed
safely without causing syntax errors.

Therefore, STORE_FAST 0 stores the value of x in position 0 of localsplus, and
STORE_FAST 1 stores the value of y in position 1, and so on. Later, when local variables
need to be read, LOAD_FAST with the correct index can quickly fetch their values.

Local variables are handled quite simply. Next, let’s look at global variables.

Global and Built-in Variables (G, B)

Let’s start with the storage of global variables:

1 2 LOAD_CONST 0 (9527)
4 STORE_NAME 0 (a)

2 6 LOAD CONST 1 (1450)
8 STORE_NAME 1 (b)
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The instruction used here is STORE_NAME. Let’s look into what this instruction does:
// file: Python/bytecodes.c

inst(STORE_NAME, (v -- )) {
PyObject *name = GETITEM(frame->f code->co names, oparg);
PyObject *ns = LOCALS();
int err;
// ... omitted ...
if (PyDict CheckExact(ns))
err = PyDict SetItem(ns, name, v);
else

err = PyObject SetItem(ns, name, v);
DECREF_INPUTS();
ERROR_IF(err, error);

name is fetched from the current Frame’s Code Object’s co_names member, which
is typically a tuple. With the GETITEM() macro and oparg, it fetches the item at the
specific index.

Next, ns is acquired using the LOCALS () macro, which gets the f locals member of
the Frame—typically a dictionary. When you call Python’s locals() function, it returns
this object. It is called ns here as an abbreviation for “namespace”.

With the desired variable name and the namespace, the value is saved using either
PyDict_SetItem() or PyObject SetItem().Thus, for the lines below:

2 LOAD_CONST 0 (9527)
4 STORE_NAME 0 (a)
6 LOAD_CONST 1 (1450)
8 STORE_NAME 1 (b)

It’s clear that 9527 is stored as a and 1450 as b. These variable-value pairs are stored
in the Frame’s f_locals dictionary. With an understanding of how these are stored, let’s
now see how global variables are read. Reading global variables is done via the LOAD_
GLOBAL instruction, which is more complex than LOAD FAST:

// file: Python/bytecodes.c
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inst(LOAD GLOBAL, (unused/1, unused/1, unused/1, unused/1 -- null if
(oparg & 1), v)) {
#if ENABLE SPECIALIZATION
_PylLoadGlobalCache *cache = (_PyLoadGlobalCache *)next instr;
if (ADAPTIVE COUNTER IS ZERO(cache->counter)) {
PyObject *name = GETITEM(frame->f code->co names, oparg>>1);
next_instr--;
_Py Specialize LoadGlobal(GLOBALS(), BUILTINS(), next instr, name);
DISPATCH SAME_OPARG();
}
STAT _INC(LOAD GLOBAL, deferred);
DECREMENT ADAPTIVE COUNTER(cache->counter);
#tendif /* ENABLE SPECIALIZATION */
// ... omitted ...

Let’s break this down, starting with:
PyObject *name = GETITEM(frame->f code->co_names, oparg>>1);

This should look familiar. It retrieves the relevant item from the Frame’s Code
Object’s co_names tuple, using oparg>>1 to get the index. For example:

10 LOAD GLOBAL 1 (NULL + print)
20 LOAD GLOBAL 2 (a)
30 LOAD GLOBAL 4 (b)

At this point, co_names might look like (NULL + print, a, b), so LOAD GLOBAL 2
shifts 2 right by one bit to get 1, fetching co_names[ 1], which is a. Similarly, LOAD GLOBAL
4 gets index 2, corresponding to b.

Next:

_Py Specialize LoadGlobal(GLOBALS(), BUILTINS(), next instr, name);

This Py Specialize LoadGlobal() function is quite complex internally, but what it
does is interesting. Suppose we have the following Python code:

print(x)
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On the first execution, Python will normally use the LOAD _GLOBAL instruction to look
up both print and x. This lookup checks the global and built-in namespaces, which
is a bit slower. When Py Specialize LoadGlobal intervenes, it records the result of
this lookup:

For example, it might record that the variable x was found in a particular position in
the global namespace, or note that the lookup succeeded in the built-in namespace. This
information is stored in the memory following this bytecode instruction, allowing the
VM to skip the full lookup process on subsequent encounters and fetch the value directly
from the cached information.

In other words, if a variable is repeatedly looked up (like the built-in function
print()), Python will “remember” its location, so next time it doesn’t have to search
from scratch.

The arguments, such as next_instr, indicate the next bytecode instruction, while
GLOBALS() and BUILTINS() are macros for the Frame’s f_globals (global variables) and
f builtins (built-in variables) members:

// file: Python/ceval macros.h

#define GLOBALS() frame->f globals
#define BUILTINS() frame->f builtins

Now, let’s look at the lower part of the LOAD_GLOBAL instruction:
// file: Python/bytecodes.c

inst(LOAD GLOBAL, (unused/1, unused/1, unused/1, unused/1 -- null if (oparg
& 1), v)) {
// ... omitted ...
PyObject *name = GETITEM(frame->f code->co names, oparg>>1);
if (PyDict CheckExact(GLOBALS())
88 PyDict CheckExact(BUILTINS()))

{

v = PyDict LoadGlobal((PyDictObject *)GLOBALS(),
(PyDictObject *)BUILTINS(),
name);

// ... omitted ...

Py INCREF(v);

}
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else {
v = PyObject GetItem(GLOBALS(), name);
if (v == NULL) {
// ... omitted ...

v = PyObject GetItem(BUILTINS(), name);
// ... omitted ...

}
null = NULL;

I've omitted some error handling for clarity. Python first checks if GLOBALS() and
BUILTINS() are both dictionaries. If so, PyDict LoadGlobal() is used to fetch the
variable; otherwise, it falls back to PyObject GetItem().

Regardless of the path taken, you can see that the search for a global variable begins
with the global namespace (G) and, if not found, proceeds to the built-in namespace (B).
This completes the process of reading a global variable.

Enclosing Variables (E)

Finally, let’s examine enclosing variables, which are those found in nested functions, for

example:

def outer():
X = 520

def inner():
print(x)

inner()

Here, x is an enclosing variable. Inspecting the bytecode for this example, the

instruction for x = 520is:

4 LOAD_CONST 1 (520)
6 STORE DEREF 1 (x)
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And the instruction for print(x) is:

4 LOAD GLOBAL 1 (NULL + print)
14 LOAD DEREF 0 (x)
16 CALL 1

It seems STORE_DEREF and LOAD DEREF deal with enclosing variables. Let’s view
STORE_DEREF:

// file: Python/bytecodes.c

inst(STORE_DEREF, (v --)) {
PyObject *cell = GETLOCAL(oparg);
PyObject *oldobj = PyCell GET(cell);
PyCell SET(cell, v);
Py XDECREF(oldobj);

Here, PyCellObject is related to closures. We’ll discuss closures in detail in the next
chapter. For now, you can think of it as a container for storing enclosing variables. What
about LOAD_DEREF?

// file: Python/bytecodes.c

inst(LOAD DEREF, ( -- value)) {
PyObject *cell = GETLOCAL(oparg);
value = PyCell GET(cell);
if (value == NULL) {
format_exc_unbound(tstate, frame->f code, oparg);
ERROR _IF(true, error);

}
Py INCREF(value);

As expected, this fetches the value from the PyCellObject. This completes storage
and retrieval for enclosing variables.
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A brief summary:

o Local variables (L) are stored in the Frame’s f_localsplus via
STORE_FAST and read using LOAD_FAST.

» Enclosing variables (E) are stored in a PyCellObject via STORE
DEREF and read using LOAD_DEREF.

o Global variables (G) are found in the Frame’s f_globals member;
built-ins (B) are in f_builtins. Both are set via STORE_NAME and read
using LOAD_GLOBAL.

Although the LEGB lookup order is determined at runtime, whether x = 520 is local
or global is decided at compile time. That means that, when you write and run your
Python code, the Python compiler translates your code to bytecode and that bytecode
has already determined which lookup method should be used for each variable.

If you want to understand how Python decides LEGB scopes at compile time, you’ll
need to dive deeper into how Python compiles code to bytecode.
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CHAPTER 22

Inside the Python VM:
Cells and Closures

In the previous chapter, we discussed the LEGB scope design and encountered a special
object called the Cell Object. In Python, this object is used to implement the concept of
“closure” Many programming languages feature closures, and in this chapter, we will
explore what a Cell Object is and how closures are designed by looking directly at the
CPython source code.

Creating a Cell Object

Let’s first take a look at the structure of a Cell:
// file: Include/cpython/cellobject.h

typedef struct {
PyObject HEAD
PyObject *ob_ref;
} PyCellObject;

Compared to other types, the structure of PyCell0Object is much simpler. Aside
from the standard PyObject HEAD, it only has one member: ob_ref. This member is of
type PyObject*, which allows the PyCellObject to store a pointer to any kind of Python
object. Let’s see how it is created, using the following example:

def hi():
a=1
b =2

def hey():
print(a)
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First, let’s examine the bytecode for the definition part of the hi() function:

// ... omitted ...
0 MAKE_CELL 2 (a)
2 4 LOAD_CONST 1 (1)
6 STORE_DEREF 2 (a)
3 8 LOAD_CONST 2 (2)
10 STORE_FAST 0 (b)
// ... omitted ...

Before creating the hey () function, several new instructions appear. Let’s go through
them line by line, starting with MAKE_CELL 2:

// file: Python/bytecodes.c

inst(MAKE_CELL, (--)) {
PyObject *initial = GETLOCAL(oparg);
PyObject *cell = PyCell New(initial);
if (cell == NULL) {
goto resume with error;

}
SETLOCAL (oparg, cell);

As seen in the previous chapter, GETLOCAL (oparg) retrieves a value from the
localsplus array of the current frame, based on the value of oparg. This value is then
passed to the PyCell New() function:

// file: Objects/cellobject.c

PyObject *
PyCell New(PyObject *obj)
{

PyCellObject *op;

op = (PyCellObject *)PyObject GC New(PyCellObject, &PyCell Type);
if (op == NULL)
return NULL;
op->ob_ref = Py XNewRef(obj);
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_PyObject GC_TRACK(op);
return (PyObject *)op;

This function creates a PyCellObject and assigns the passed-in obj to the Cell’s
ob_ref member. The Cell is then placed back into the local variables—specifically, at a
designated position in the frame’s localsplus array—using the SETLOCAL (oparg, cell)
macro. In other words, before the assignment a = 1 takes place, a Cell has already been
prepared in the localsplus array for the variable a.

The next instruction, STORE_DEREF 2, has been discussed in the previous chapter.
Here, the argument 2—identical to MAKE_CELL 2—indicates the value should be stored
in the Cell just created. As for variable b, this does not receive the same handling; it is
simply a regular local variable and is thus managed with a STORE_FAST 0 instruction.

Closures

Let’s proceed and review the next section:

// ... omitted ...

5 12 LOAD_CLOSURE 2 (a)
14 BUILD TUPLE 1
16 LOAD CONST 3 (<code object)
18 MAKE_FUNCTION 8 (closure)
20 STORE_FAST 1 (hey)
22 RETURN_CONST 0 (None)

// ... omitted ...

From the compiled bytecode, you can see that although the inner hey () function
is created with the familiar MAKE_FUNCTION instruction, there is a new instruction
beforehand called LOAD_CLOSURE 2. What does this do?

// file: Python/bytecodes.c

inst(LOAD CLOSURE, (-- value)) {
value = GETLOCAL(oparg);
ERROR_IF(value == NULL, unbound local error);
Py INCREF(value);
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This simply retrieves a value from the frame’s localsplus array; no additional action
is taken. Next, what does BUILD_TUPLE 1 do?

// file: Python/bytecodes.c

inst(BUILD TUPLE, (values[oparg] -- tup)) {
tup = PyTuple FromArraySteal(values, oparg);
ERROR IF(tup == NULL, error);

As its name suggests, it constructs a tuple and places the value fetched by LOAD _
CLOSURE inside. Next is MAKE_FUNCTION 8, which we’ve discussed earlier. This instruction
creates a function object, but the argument 8 here means the function is a closure:

// file: Python/bytecodes.c

inst(MAKE_FUNCTION, (defaults if (oparg & oxo1),
kwdefaults if (oparg & 0x02),
annotations if (oparg & 0x04),
closure if (oparg & ox08),
codeobj -- func)) {
// ... omitted ...

if (oparg & oxo08) {
assert(PyTuple CheckExact(closure));
func_obj->func_closure = closure;

}
// ... omitted ...

Because oparg is 8, a tuple is assigned to the function object’s func_closure
member. With this step, the hey() function is now fully created. Let’s continue by
examining what happens when the inner hey () function is executed.
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Free Variables
0 COPY_FREE_VARS 1
6 4 LOAD GLOBAL 1 (NULL + print)
14 LOAD DEREF 0 (a)
16 CALL 1
24 POP_TOP
26 RETURN_CONST o (None)

Here, we see a new instruction: COPY_FREE VARS 1. What does this do?
// file: Python/bytecodes.c

inst(COPY_FREE_VARS, (--)) {

PyCodeObject *co = frame->f code;

assert(PyFunction Check(frame->f funcobj));

PyObject *closure = ((PyFunctionObject *)frame->f funcobj)->func_

closure;

assert(oparg == co->co_nfreevars);

int offset = co->co_nlocalsplus - oparg;

for (int i = 0; i < oparg; ++i) {
PyObject *o = PyTuple GET ITEM(closure, i);
frame->localsplus[offset + i] = Py NewRef(o0);

This code is quite straightforward. Here, closure refers to the tuple that was created
earlier and stored in the function object’s func_closure member. The code copies the
values inside that tuple into the current frame’s localsplus array, appending them after
the existing local variables. As a result, the inner function hey() gains access to the outer
function’s local variables.

Thus, a “free variable” refers to a variable used by an inner function that is not
defined or declared in its own scope but instead comes from the enclosing function.

If you understand the workflow above, the idea of free variables becomes much less
mysterious.
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From the Python Perspective

So far, we've looked at these mechanisms from the perspective of CPython internals. But
if you want to view them from Python itself, that’s possible too:

>>> hi.__code__.co_varnames

(Ibl, lheyl)
>>> hi. code .co_cellvars
(fa’,)

Every functionhasa _code _ attribute, which points to its code object. This code
object has the co_varnames attribute, which lists the variables defined in the function’s
local scope. As you can see, currently, only 'b' and 'hey' are present. What about
variable 'a'? From Python’s perspective, it’s no longer a simple local variable, but
instead can be found via co_cellvars, indicating it has become a Cell Object.

So how are these co_* attributes implemented? The answer lies within the tp_
getset and tp_members members in the PyCode Type structure:

// file: Objects/codeobject.c

static PyGetSetDef code getsetlist[] = {

{"co_lnotab", (getter)code getlnotab, NULL, NULL},
{" _co_code_adaptive", (getter)code getcodeadaptive, NULL, NULL},
{"co_varnames", (getter)code getvarnames, NULL, NULL},
{"co_cellvars", (getter)code getcellvars, NULL, NULL},
{"co_freevars", (getter)code getfreevars, NULL, NULL},
{"co_code", (getter)code getcode, NULL, NULL},
{0}

};

static PyMemberDef code memberlist[] = {
{"co_argcount", T _INT, OFF(co_argcount), READONLY},

{"co_posonlyargcount", T INT, OFF(co_posonlyargcount), READONLY},
{"co_kwonlyargcount”, T _INT, OFF(co_kwonlyargcount), READONLY},

{"co_stacksize", T _INT, OFF(co_stacksize), READONLY},
{"co_flags", T _INT, OFF(co_flags), READONLY?},
{"co_nlocals", T_INT, OFF(co_nlocals), READONLY},
{"co_consts", T OBJECT, OFF(co_consts), READONLY?},
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{"co_names", T OBJECT, OFF(co_names), READONLY},
{"co_filename", T _OBJECT, OFF(co_filename), READONLY},
{"co_name", T OBJECT, OFF(co_name), READONLY},
{"co_qualname", T _OBJECT, OFF(co_qualname), READONLY},
{"co_firstlineno", T_INT, OFF(co_firstlineno), READONLY},
{"co linetable", T OBJECT, OFF(co linetable), READONLY},

{"co_exceptiontable”, T OBJECT, OFF(co exceptiontable), READONLY},
{NULL} /* Sentinel */
}s

All these co_* attributes are implemented here. Attributes in tp_members are
typically more “static” and map directly to structure members with fixed memory offsets,
resulting in faster access with less computational overhead. In contrast, tp_getset uses
getter and setter functions, allowing for greater flexibility, but often with a performance
trade-off compared to direct member access.

If you want to observe these operations more closely, you can use Python’s built-in
breakpoint to investigate:

def hi():
a=1

b=2

def hey():
print(a)

breakpoint()

After running, you'll enter interactive mode, where you can inspect some properties
of the hey function:

$ python -i hi.py

>>> hi()

--Return--

> /Users/kaochenlong/projects/products/books/pythonbook.cc/hi.py(8)
hi()->None

-> breakpoint()

(Pdb) hey

<function hi.<locals>.hey>

221



CHAPTER 22  INSIDE THE PYTHON VM: CELLS AND CLOSURES

(Pdb) hey. closure

(<cell: int object>,)

(Pdb) hey. closure [0]

<cell: int object>

(Pdb) hey. closure [0].cell contents
1

Through the function’s __closure attribute, you can obtain all Cells belonging to
the inner hey() function. Every Cell has a cell _contents attribute, which lets you see
what the Cell contains. Additionally, Python has a built-in module called inspect that
enables you to access the current frame:

(Pdb) import inspect

(Pdb) f = inspect.currentframe()
(Pdb) f

<frame>

(Pdb) f.f code

<code object <module>>

(Pdb) f.f locals

{
'b': 2,
‘hey': <function hi.<locals>.hey>,
'a': 1,
' _return__ ": None,
'inspect': <module 'inspect'>,
‘f': <frame>

}

(Pdb) f.f locals['hey']
<function hi.<locals>.hey>

With inspect.currentframe(), you can access the current frame and experiment
with the attributes we previously examined. By following the progression from the
beginning of this series to this chapter, you should have a better understanding of where
to start in the source code if you're interested in how a particular feature is implemented.
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CHAPTER 23

Classes and Where
They Come From

When people talk about object-oriented programming, classes are usually the first thing
that comes up. A class can create “instances,” which we commonly refer to as objects.
But in the Python world, where everything is an object, a class itself is also an object. If a
class is an object, then what class creates the class object itself? Let’s use a simple class
as an example:

class Cat:
def init (self, name):
self.name = name

def meow(self):
print(f"Hello, {self.name}")

kitty = Cat("Kitty")
kitty.meow()

In this chapter, we'll look at what happens during the execution of this code from the
perspective of CPython’s source code and see how the class itself is created.

Creating a Class

Since classes are also objects, based on our understanding from previous chapters, you
might expect something like PyClassObject to exist in CPython. However, you'll soon
realize no such thing exists. Instead, let’s start from the bytecode to see how the class
statement creates a class:
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1 PUSH_NULL
LOAD BUILD_CLASS

2
4
6 LOAD_CONST
8

0 (<code object Cat>)
MAKE_FUNCTION 0
10 LOAD_CONST 1 ('Cat')
12 CALL 2
20 STORE_NAME 0 (Cat)

// ... omitted ...

The only unfamiliar instruction here is LOAD_BUILD CLASS. From the name, we can
guess that it’s involved in creating the class. Let’s see what this actually does:

// file: Python/bytecodes.c
inst(LOAD BUILD CLASS, ( -- bc)) {
if (PyDict CheckExact(BUILTINS())) {
bc = PyDict GetItemWithError(BUILTINS(),
& Py ID(_ build class_));
// ... error handling omitted ...
Py INCREF(bc);

}

else {
bc = PyObject GetItem(BUILTINS(), & Py ID(_ build class ));
// ... error handling omitted ...

}

This checks whether BUILDINS() is a dictionary. If so, it uses PyDict
GetItemWithError(); otherwise it calls PyObject GetItem().We've seen PyObject
GetItem() before—it has a slightly longer execution path and therefore worse
performance compared to _PyDict GetItemWithError().

But when would BUILDINS() not be a dictionary? Most of the time it is, unless you
manually modify the builtins__ variable. builtins__is Python’s built-in module
containing many of the built-in functions, but you are technically able to change it
manually:

>>> _builtins__
<module 'builtins' (built-in)>
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>>> builtins__ = "Hello Kitty"
>>> _ builtins__
'Hello Kitty'

At this point, BUILDINS() is no longer a dictionary. But doing this may make your
program behave unexpectedly or throw errors, so unless you know exactly what you're
doing, don’t change it. So whatis __build class__?It’s actually a built-in Python
function:

>>>  build class__
<built-in function _ build class >

In other words, the LOAD_BUILD_ CLASS instruction fetches the _build class__
function, which will be used shortly to create the class. You probably don’t use this
function directly very often, but let me demonstrate using it to create a simple Cat class.
First, I'll define a function:

def cat body():
def init (self, name):
self.name = name

def meow(self):
print(f"Hello, {self.name}")

return locals()

This function defines two inner functions, _init () and meow(). Since they are
local variables within cat_body(), calling locals() at the end will return a dictionary
that includes these functions. Next, we use the _ build class__ () function to construct

the class:

MyCat = build class_ (cat_body, "Cat")
kitty = MyCat("Kitty")
kitty.meow()

This allows us to create a Cat class. In the Python world, class is just syntactic
sugar—under the hood, it'sthe __build class__ () built-in function doing the
actual work.
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The Mastermind Behind the Scenes

So, howisthe build class () built-in function defined?

// file: Python/bltinmodule.c
static PyObject *
builtin__ build class_(PyObject *self, PyObject *const *args, Py
ssize t nargs,
PyObject *kwnames)

// ... omitted ...

This function is about 150 lines long; let’s go through it step by step:

if (nargs < 2) {
PyErr SetString(PyExc_TypeError,
" build class_ : not enough arguments");
return NULL;
}
func = args[0]; /* Better be callable */
if (!PyFunction Check(func)) {
PyErr SetString(PyExc_TypeError,
" build class_ : func must be a function");
return NULL;
}
name = args[1];
if (!PyUnicode Check(name)) {
PyErr SetString(PyExc_TypeError,

__build class__: name is not a string");
return NULL;

}

When we used __build class__ (), the first and second arguments were required,
and the first had to be a function and the second a string. This section checks those
requirements. Next:
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// ... omitted ...
orig bases = PyTuple FromArray(args + 2, nargs - 2);

// ... omitted ...
bases = update bases(orig bases, args + 2, nargs - 2);

Why skip the first two arguments? Because the first is the function, the second is the
class name string, and starting from the third argument are the base classes (if any) for
inheritance. The update_bases() function then processes these base classes, handling
special cases related to inheritance—details of which we’ll discuss in the next chapter.
Moving on:

meta = PyDict GetItemWithError(mkw, & Py ID(metaclass));

This tries to find a "metaclass” key in the keywords dictionary and retrieves its
value if present. Here, Py ID(metaclass) isjust a string, but why write it this way?
As explained before, for performance reasons, CPython pre-compiles frequently used
strings and makes them available in the interpreter. “metaclass”Error! Bookmark not
defined. is one of these. Using this mechanism allows the interpreter to use a pre-
compiled string instead of creating a new one each time, improving performance. For
more on other strings compiled this way, refer to Tools/build/generate_global
objects.py in the source code.

Selecting the Metaclass

Now comes the important part:
if (meta == NULL) {

if (PyTuple GET SIZE(bases) == 0) {
meta = (PyObject *) (&PyType Type);

}

else {
PyObject *base0 = PyTuple GET ITEM(bases, 0);
meta = (PyObject *)Py TYPE(base0);

}

Py INCREF(meta);
isclass = 1;
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If no explicit meta is specified, the function checks if any base classes were provided.
If there are none, it uses PyType_Type as the meta, which is basically the type class in
Python. If there are base classes, Python allows multiple inheritance, so it takes the
metaclass of the first base class (using Py _TYPE(base0) retrieves the ob_type member,
i.e., the metaclass of base0). Let’s continue:

if (isclass) {
winner = (PyObject *) PyType CalculateMetaclass((PyTypeObject *)meta,
bases);
if (winner == NULL) {
goto error;
}
if (winner != meta) {
Py SETREF(meta, Py NewRef(winner));

Here, the PyType CalculateMetaclass() function determines the “winner” Why
do we need to determine a winner? Because with Python’s multiple inheritance design, a
class can have multiple base classes, potentially with different metaclasses. A resolution
algorithm is therefore needed to determine which metaclass should be used. We’ll
discuss this resolution logic in the next chapter.

Preparing the Namespace
Moving on:
if (_PyObject LookupAttr(meta, & Py ID(_ prepare ), 8prep) < 0) {

ns = NULL;

}
else if (prep == NULL) {
ns = PyDict New();

}

else {
PyObject *pargs[2] = {name, bases};
ns = PyObject VectorcallDict(prep, pargs, 2, mkw);
Py DECREF(prep);

}
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This code prepares the class namespace. If the metaclass (meta) definesa
prepare__ method, it uses that to prepare the namespace; otherwise, it defaults to an
empty dictionary. What can you do with __prepare__ in Python? Here’s an example:

class MetaCat(type):
def _prepare_ (name, bases):
print(f"Hello Meta! {name} {bases}")
return {"SPECIAL NAME": "Hello Kitty"}

class Cat(metaclass=MetaCat):
pass

With this, both the Cat class and its instances will have the . SPECIAL_NAME attribute.
For more details about this feature, refer to the official documentation and PEP-3115.

o Datamodel: https://docs.python.org/3/reference/datamodel.
html#preparing-the-class-namespace

o PEP-3115: https://peps.python.org/pep-3115/

The Birth of a Class!

Back to the original source code, the function is nearing completion:

cell = PyEval Vector(tstate, (PyFunctionObject *)func, ns, NULL, 0, NULL);
if (cell != NULL) {
if (bases != orig bases) {
if (PyMapping_SetItemString(ns,
bases) < 0) {
goto error;

__orig bases ", orig

}
PyObject *margs[3] = {name, bases, ns};
cls = PyObject VectorcallDict(meta, margs, 3, mkw);
if (cls != NULL &% PyType Check(cls) &% PyCell Check(cell)) {

PyObject *cell cls = PyCell GET(cell);

if (cell cls != cls) {

if (cell cls == NULL) {
const char *msg =
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" class__ not set defining %.200R as %.200R. "
"Was _ classcell  propagated to type. new ?";
PyErr Format(PyExc_RuntimeError, msg, name, cls);
} else {
const char *msg =
" class__ set to %.200R defining %.200R as %.200R";
PyErr Format(PyExc TypeError, msg, cell cls, name, cls);
}
Py SETREF(cls, NULL);

goto error;

We've seen cell in the previous chapter. If cell is not null, we're ready to create the
class. The key step is here:

cls = PyObject VectorcallDict(meta, margs, 3, mkw);

This line calls the metaclass (meta) to create the class object (c1s). That’s the answer
to our original question:

o All classes are created by invoking their metaclass during the creation
process.

» Ifyou specify a metaclass, the specified metaclass is used to create
the class.

o Ifyoudon’t specify a metaclass:
« Ifthere are base classes, use the metaclass of the first base class.
o Ifthere are no base classes, use the built-in type as the metaclass.

In summary, every class—either user-specified or by default—has a metaclass.
Because the metaclass for all built-in classes is type, except for those that explicitly
specify a different metaclass, you can say that nearly all classes in Python are created by
the type class.
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That’s why when you use type() to print any class, whether built-in or user-defined:

>>> type(object)
<class 'type'>
>>> type(int)
<class 'type'>
>>> type(str)
<class 'type'>
>>> class Dog:

. pass

>>> type(Dog)
<class 'type'>

The result is always <class 'type'>. Butif you specify your own metaclass:

>>> type(Cat)
<class ' main__ .MetaCat'>

Then it reflects the metaclass you specified.

Chicken or the Egg?

If you dig deeper, you'll notice the type class itself also has its own metaclass specified
as type:

>>> type(type)
<class 'type'>

How is that possible? How can something create itself? Let’s look at the definition of
PyType Type:
// file: Objects/typeobject.c
PyTypeObject PyType Type = {
PyVarObject HEAD INIT(&PyType Type, 0)
"type", /* tp _name */
sizeof(PyHeapTypeObject), /* tp basicsize */
// ... omitted ...
};
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Here you can see why the string "type" appears in the output. The macro
PyVarObject HEAD INIT() is the key to the chicken-or-the-egg dilemma:

// file: Include/object.h

#tdefine PyObject HEAD INIT(type) \
{ \
_PyObject EXTRA INIT  \
{1}, \
(type) \

1

This macro essentially assigns the parameter passed in (in this case, PyType_Type)
to the ob_type member of the object itself. This sets the metaclass of PyType Type to
be type.

Why design it this way? If not, the story that “every class’s metaclass is type” simply
wouldn’t hold together!
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Class Inheritance
in CPython

In other programming languages, class “inheritance” might not need much explanation:
it’s generally about defining shared methods in a base class so that subclasses can use
them directly. However, Python has an extra layer of complexity with its support for
multiple inheritance, which allows a single class to inherit from multiple base classes.
This makes things a bit more complicated. Well, maybe more than a bit—if you dive into
the source code, it can get quite involved.

Classes and Inheritance
Creating a Class

Let’s start with the basics:

class Animal:
pass

class Cat(Animal):
pass

Let’s see what kind of bytecode is generated by these lines. Starting with the first part:

1 2 PUSH NULL
4 LOAD BUILD CLASS
6 LOAD_CONST 0 (<code object Animal>)
8 MAKE_FUNCTION 0
10 LOAD_ CONST 1 ('Animal")
12 CALL 2
20 STORE_NAME 0 (Animal)
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Most of these instructions should look familiar. Let’s walk through them line by line,
and this time, let’s also break down the operations on the memory stack.

First, the LOAD BUILD CLASS instruction—which we’ve seen in the previous
chapter—loads the build class_ () function used for creating classes. After it’s
loaded, the stack looks like this:

Next, the LOAD_CONST instruction loads the precompiled code object for the Animal
class. At this point, the stack becomes:

The MAKE_FUNCTION 0 instruction then pops the code object off the top of the stack,
uses it as a parameter, and creates a function object wrapping this code object, pushing
it back onto the stack:

Next, LOAD_CONST 1 loads the string 'Animal ' —this will be used as the name of the
class. The stack now looks like:
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The CALL 2 instruction pops off the top two items from the stack as arguments and
calls the function that is now third from the top. So essentially, this is equivalent to
__build class_ (<Animal function obj>, "Animal").The new Animal class is then
pushed back onto the stack:

With the class created, let’s see how inheritance works.

How Does Inheritance Work?

5 22 PUSH_NULL
24 LOAD BUILD CLASS

26 LOAD CONST 2 (<code object Cat>)
28 MAKE_FUNCTION 0

30 LOAD_CONST 3 ('Cat')

32 LOAD_NAME 0 (Animal)

34 CALL 3

42 STORE_NAME 1 (Cat)

44 RETURN_CONST 4 (None)

Most instructions are the same, but CALL 3 pops the top three elements off the stack
as arguments and uses the fourth element as the function to execute. The result in this
case is equivalent to:

// file: Python/pythonrun.c
__build class_ (<Cat function obj>, "Cat", <Animal class obj>)

This establishes the inheritance relationship between Cat and Animal. Let’s review
the implementation of the built-in__build class__ () function, which we covered in
the previous chapter:

// file: Python/bltinmodule.c

static PyObject *
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builtin__ build class_(PyObject *self, PyObject *const *args,
Py ssize t nargs, PyObject *kwnames)

{
// ... omitted ...
orig bases = PyTuple FromArray(args + 2, nargs - 2);
// ... omitted ...

}

The first argument is the function object that defines the class, the second is the
name of the class, and any remaining arguments are the base classes—which are
packed into a tuple, allowing for any number of base classes. Well...it’s not completely
unlimited—technically, there’s no explicit restriction, but the more base classes you
specify, the more time it takes to compute the inheritance relationships, so it’s not

common to use an excessive number.

Method Lookup

Let’s start with a simple example:

class Cat:
def hi(self):
pass

kitty = Cat()
kitty.hi()

How is the . hi() method found when called on the kitty object? Let’s look at the
generated bytecode:

4 LOAD BUILD CLASS

6 LOAD CONST 0 (<code object Cat>)
8 MAKE_FUNCTION 0

10 LOAD_CONST 1 ('Cat")

12 CALL 2

20 STORE_NAME 0 (Cat)

6 22 PUSH NULL
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o

24 LOAD _NAME
26 CALL 0

(Cat)

34 STORE_NAME 1 (kitty)
7 36 LOAD_NAME 1 (kitty)
38 LOAD ATTR 5 (NULLIself + hi)
58 CALL 0
66 POP_TOP
68 RETURN_CONST 2 (None)

The first part defines the Cat class. The middle section creates the kitty instance.
Once the instance is created, LOAD_ NAME 1 (kitty) loads the previously created object
onto the stack, and LOAD_ATTR 5 attempts to find the hi method on this object. The next
CALL oinstruction then calls the method.

Let’s look at what the LOAD_ATTR 5 instruction actually does:

// file: Python/bytecodes.c

inst(LOAD ATTR, (unused/9, owner -- res2 if (oparg & 1), res)) {
// ... omitted ...
PyObject *name = GETITEM(frame->f code->co names, oparg >> 1);
if (oparg & 1) {
PyObject* meth = NULL;
if (_PyObject GetMethod(owner, name, &meth)) {
assert(meth != NULL); // No errors on this branch
res2 = meth;
res = owner; // Transfer ownership

}
else {
DECREF_INPUTS();
ERROR_IF(meth == NULL, error);
res2 = NULL;
res = meth;
}
}
else {
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// ... omitted ...

Because the oparg for LOAD ATTR 5 is 5, the relevant path will call the PyObject
GetMethod(owner, name, &meth) function, which tries to find name in owner and assign
it to meth. For our example, owner refers to the kitty instance, and name is "hi".

So how does Python find the specified method in an object? Let’s look at the relevant
source code, breaking it down into parts as it’s a bit long:

// file: Objects/object.c
int
_PyObject GetMethod(PyObject *obj, PyObject *name, PyObject **method)

{
// ... omitted ...

PyTypeObject *tp = Py TYPE(obj);

// ... omitted ...
PyObject *descr = PyType Lookup(tp, name);

// ... omitted ...

Omitting some of the error-checking code, the PyType Lookup() function’s name
suggests it looks for the attribute or method named name on the specified type. Diving
into the function:

// file: Objects/typeobject.c

/* Internal API to look for a name through the MRO.
This returns a borrowed reference, and doesn't set an exception! */

PyObject *
_PyType Lookup(PyTypeObject *type, PyObject *name)

{
// ... omitted ...

res = find name_in mro(type, name, &error);

// ... omitted ...
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return res;

The comment makes it clear: this method searches through the MRO (Method
Resolution Order). The function find_name_in_mro() is quite self-explanatory as well.
The MRO is the sequence Python uses to look up methods—a somewhat complex
algorithm (which we’ll discuss in detail next time), but for now, just know that it controls
the method lookup order.

Returning to the original PyObject GetMethod() function, let’s continue:

descrgetfunc f = NULL;
if (descr != NULL) {
Py INCREF(descr);
if (_PyType HasFeature(Py TYPE(descr), Py TPFLAGS METHOD DESCRIPTOR)) {
meth_found = 1;
} else {
f = Py TYPE(descr)->tp descr get;
if (f != NULL && PyDescr IsData(descr)) {
*method = f(descr, obj, (PyObject *)Py TYPE(obj));
Py DECREF(descr);
return O;

Python supports a feature called “descriptors,” and the tp_descr_get and tp _descr_
set members correspondtothe get and set methods of a descriptor. This code
checks whether descr is a method descriptor.

There are two types of descriptors: data descriptors and non-data descriptors.

For more details, you can refer to the official documentation. A method descriptor
is akind of non-data descriptor—ithasa __get method, butno _set_or
delete_ method.
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This section determines whether the object is a method descriptor and, if not,
calls f(descr, obj, (PyObject *)Py TYPE(obj)) and assigns the result to method—
essentially invoking the descriptor’'s __get method in Python. Continuing further:

PyObject *dict;
if ((tp->tp_flags & Py TPFLAGS MANAGED DICT)) {
PyDictOrValues* dorv ptr = PyObject DictOrValuesPointer(obj);
if (_PyDictOrValues IsValues(*dorv ptr)) {
PyDictValues *values = PyDictOrValues GetValues(*dorv ptr);
PyObject *attr = PyObject GetInstanceAttribute(obj, values, name);
if (attr != NULL) {
*method = attr;
Py XDECREF(descr);

return 0;
}
dict = NULL;
}
else {
dict = dorv_ptr->dict;
}
}
else {
PyObject **dictptr = PyObject ComputedDictPointer(obj);
if (dictptr != NULL) {
dict = *dictptr;
}
else {
dict = NULL;
}
}

if (dict != NULL) {
Py INCREF(dict);
PyObject *attr = PyDict GetItemWithError(dict, name);
if (attr != NULL) {
*method = Py NewRef(attr);
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Py DECREF(dict);
Py XDECREF(descr);
return O;

}
Py DECREF(dict);

if (PyErr Occurred()) {
Py _XDECREF(descr);
return O;

This code may look a bit verbose, but its purpose is to attempt to find the specified
attribute in the object’s dictionary or attributes. If it's found, it stores it in method and
returns from the function; if not, it continues through the other resolution logic. If
nothing is found, an error will eventually be raised. Once the method is found, it is put
back on the stack and executed by the next CALL 0 instruction.

In summary, LOAD_ATTR actually does quite a lot of work. When you write code like
kitty.say goodbye() in Python, this attribute access is managed by the LOAD ATTR
instruction. We've omitted many details, specifically the complex MRO (Method
Resolution Order) algorithm I mentioned earlier. In multiple inheritance scenarios,
this algorithm can become somewhat complicated. We'll discuss it thoroughly in the

next part!
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Method Resolution Order
and C3 Linearization

In this chapter, let’s take a short break from reading CPython source code and focus
on how Python calculates the method lookup order in multiple inheritance situations,
specifically when multiple parent classes implement the same method—which one takes

precedence?

The C3 Linearization Algorithm

Regarding Python’s use of the C3 linearization algorithm, I'll borrow a brief description
from Wikipedia:

Python’s Guido van Rossum summarizes C3 superclass
linearization thus: “Basically, the idea behind C3 is that if you
write down all of the ordering rules imposed by inheritance
relationships in a complex class hierarchy, the algorithm will
determine a monotonic ordering of the classes that satisfies all of
them. If such an ordering can not be determined, the algorithm

will fail”

The key here is “monotonicity,” meaning that whether the inheritance relationships
are simple or highly complex, the C3 linearization algorithm tries to calculate a
reasonable order. If it can find such an order, the result will be the same every time.

o C3linearization: https://en.wikipedia.org/wiki/C3_
linearization
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Whose Method Gets Called?

Let’s start with a simple code example:

class A:
def greeting(self):
print("Hey in A")

class B(A):
def greeting(self):
print("Hey in B")

class C(A):
def greeting(self):
print("Hey in C")

class D(B, C):
pass

d = D()
d.greeting()

This is a straightforward multiple inheritance structure. Class D has two parent
classes. So, when you call d.greeting(), whose method does it use? In this case, it’s
simple—class D’s immediate parent is class B, and B defines its own greeting method, so
that’s the one that gets called. But why B and not C, since they are on the same level?

Let’s complicate the story a bit—what if class B doesn’t define the greeting()
method? For example:

class A:
def greeting(self):
print("Hey in A")

class B(A): pass
class C(A):

def greeting(self):
print("Hey in C")

class D(B, C): pass
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If class B doesn’t define the greeting() method, does the method lookup go up
to class A, or does it move sideways to the sibling class C? Python’s Method Resolution
Order (MRO) determines this. You can check a class’s MRO using the .mro() method:

>>> D.mro()
[<class ' main_ .D'>, <class ' main_ .B'>, <class ' main_.C'>, <class
' main__ .A">, <class 'object'>]

The order is D -> B -> C -> A and finally Python’s base class object. So when you call
d.greeting() and class B does not define the method, the next in order is class C, and its
greeting method will be called.

Python’s MRO uses the C3 Linearization Algorithm, which has been adopted since
Python 2.3. The purpose of this algorithm is to find a reasonable inheritance order so
that every class’ methods are resolved predictably.

What about before Python 2.3? Before that, Python used depth-first search (DFS)
to determine the MRO. For the example above, DFS would yield D -> B -> A -> Cas the
order, which could cause problems in certain situations, such as the notorious diamond
inheritance problem.

MRO Calculation
Single Inheritance

Let’s start with a simple case—single inheritance. To keep things straightforward, let’s
just use pass in each class:

class A: pass
class B(A): pass
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The inheritance hierarchy looks like this:

Single inheritance

Before calculating the MRO for A, it’s important to note that although class A doesn’t
explicitly inherit another class, in Python 3, it will implicitly inherit from object. So, the
hierarchy actually looks like this:
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object

Single inheritance full

Let’s start from the top with the object class. We’ll use L<Class> to denote the
linearization order (i.e., the MRO):

L<object> = [object]
Since object is at the top, its MRO is just [ object ]. Now for class A:
L<A> = [A] + merge(L<object>, [object])

At first glance, this formula may look complicated, but it’s actually just the current
class plus the merged, unique sequence of its parent linearizations and parent lists.
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The merging process selects the first “good head” from the heads of the lists. A “good
head” must not appear further down any other list or, if so, must only appear as the head
of those lists. This is akin to untangling threads and finding a proper loose end to pull.

Let’s step through the calculation. First, expand L<object>:

L<A> = [A] + merge([object], [object])

Since there’s only a single object, it becomes our good head. Remove it from the lists
and prepend to the result:

L<A> = [A, object]
This case is simple, but let’s look at B:
L<B> = [B] + merge(L<A>, [A])
Expand L<A>:
L<B> = [B] + merge([A, object], [A])
Now, for the merging procedure (simplifying the rules):

1. Ifthe head of alist (e.g., A) is not present (or is the head) in all
other lists, it’s a good head. Take it, then repeat.

2. Ifnot, try the next list in order.
3. Keep repeating until all elements are added in order.

Here, A appears as the head in both lists, so it’s a good head. Remove it from all lists:
L<B> = [B, A] + merge([object])

The remaining is straightforward:
L<B> = [B, A, object]

Let’s check with .mro():

>>> A.mro()

[<class ' main_ .A
>>> B.mro()
[<class ' main_ .B'>, <class ' main_ .A'>, <class 'object'>]

>, <class 'object'>]

Looks correct. Now let’s move on to multiple inheritance, which is more complex.
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Multiple Inheritance

Let’s look at a simple example of multiple inheritance:

class A: pass

class B(A): pass
class C(A): pass
class D(B, C): pass

The inheritance diagram looks like this:

Multiple inheritance simple

Both L<A>, L<B>, and L<C> are as before:

L<B>
L<C>

[B, A, object]
[C, A, object]
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Let’s focus on L<D>:
L<D> = [D] + merge(L<B>, L<C>, [B, C])
Expand L<B> and L<C>:
L<D> = [D] + merge([B, A, object], [C, A, object], [B, C])

Start by looking for a good head. The head B exists as the head in the last list, so it’s a
good head. Remove B:

L<D> = [D, B] + merge([A, object], [C, A, object], [C])

Next, try A, butin the [C, A, object] list, Aisn’t the head. So we check C, which is a
good head—remove C:

L<D> = [D, B, C] + merge([A, object], [A, object], [A, object])
Now A is the head in all lists, so take it:

L<D> = [D, B, C, A] + merge([object], [object], [object])
Finally, remove object:

L<D> = [D, B, C, A, object]
Let’s verify:

>>> D.mro()
[<class ' main_ .D'>, <class ' main_ .B'>, <class ' main_.C'>, <class
' main__ .A">, <class 'object'>]

Matches our calculation.
In general, the order seems to be: move up first, then across sibling classes, then up
again, until reaching object. But let’s see a more complicated scenario.

A More Complex Inheritance Example

Here’s the code:

class A: pass
class B: pass
class C(A, B): pass
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class D(B): pass
class E(C): pass
class F(D, C): pass
class G(F, E): pass

That’s a bit more complex:

Multiple inheritance complex

Let’s start step by step:
L<A> = [A, object]

L<B> = [B, object]
L<C> = [C, A, B, object]

Class D is still single inheritance:
L<D> = [D, B, object]
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Now for L<E>:
L<E> = [E] + merge(L<C>, [C])
Expand L<C>:
L<E> = [E] + merge([C, A, B, object], [C])
Cis a good head; remove it:
L<E> = [E, C] + merge([A, B, object])
Only one list remains:
L<E> = [E, C, A, B, object]
Now, L<F>:
L<F> = [F] + merge(L<D>, L<C>, [D, C])
Expand L<D> and L<C>:
L<F> = [F] + merge([D, B, object], [C, A, B, object], [D, C])
D is a good head; remove it:
L<F> = [F, D] + merge([B, object], [C, A, B, object], [C])

B can’t be selected yet sincein [C, A, B, object] it’s not the head. Try C, whichis a
good head; remove it:

L<F> = [F, D, C] + merge([B, object], [A, B, object])
Still, B isn’t a good head yet, but A is, so remove it:

L<F> = [F, D, C, A] + merge([B, object], [B, object])
Now, both lists start with B, so finalize:

L<F> = [F, D, C, A, B, object]
Lastly, for L<G>:

L<G> = [G] + merge(L<F>, L<E>, [F, E])
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Expand L<F> and L<E>:
L<G> = [G] + merge([F, D, C, A, B, object], [E, C, A, B, object], [F, E])

Let’s fast-forward a bit for brevity:

L<G> = [G, F] + merge([D, C, A, B, object], [E, C, A, B, object], [E])
L<G> = [G, F, D] + merge([C, A, B, object], [E, C, A, B, object], [E])
L<G> = [G, F, D, E] + merge([C, A, B, object], [C, A, B, object])

L<G> = [G, F, D, E, C, A, B, object]

Again, the process is upward then across, repeating as needed. Let’s check F and G
with .mro():

>>> F.mro()

[<class

__main__ .F'>, <class ' main_ .D'>, <class ' main_ .C'>, <class
__main__ .A'>, <class ' main_ .B'>, <class 'object'>]
>>> G.mro()

[<class ' main_ .G'>, <class ' main_ .F'>, <class ' main_ .D'>, <class

__main_ .E'>, <class ' main_ .C'>, <class ' main_ .A'>, <class
main_ .B'>, <class 'object'>]

Everything checks out.

While the steps may seem complicated, the overall procedure is consistent. Thanks
to the C3 linearization algorithm, Python ensures a unique, deterministic, and orderly
inheritance sequence, even in complex multiple inheritance scenarios.

What If It Can’t Be Calculated?

Here’s another example:

class A: pass

class B(A): pass
class C(A): pass
class D(B, C): pass
class E(C, D): pass
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The inheritance structure is:

Multiple inheritance does not work

L<A> = [A, object]
L<B> = [B, A, object]
L<C> = [C, A, object]

Now for L<D>:
L<D> = [D] + merge(L<B>, L<C>, [B, C])
Expand L<B> and L<C>:

L<D> = [D] + merge([B, A, object], [C, A, object], [B, C])

254



CHAPTER 25 METHOD RESOLUTION ORDER AND C3 LINEARIZATION

Proceeding quickly:

L<D> = [D, B] + merge([A, object], [C, A, object], [C])
L<D> = [D, B, C] + merge([A, object], [A, object])
L<D> = [D, B, C, A, object]

Now for L<E>:
L<E> = [E] + merge(L<C>, L<D>, [C, D])
Expand L<C> and L<D>:
L<E> = [E] + merge([C, A, object], [D, B, C, A, object], [C, D])

Try to merge: C is not a good head; try D next, also not a good head; try the following
G, still no luck. In short, there’s no possible good head, so the inheritance hierarchy
cannot satisfy the C3 linearization and merging rules. In this situation, Python will raise
a TypeError:

TypeError: Cannot create a consistent method resolution
order (MRO) for bases C, D

“Not every romance ends with fond memories JJJ

Not all multiple inheritance hierarchies can produce a valid MRO. If you encounter
this, consider if such complexity is truly necessary, or solve it by adjusting the
inheritance order.

In the next chapter, we'll take a look at how the C3 algorithm is implemented inside
CPython.
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The Role of super() in
Multiple Inheritance

In the previous chapter, we gave a brief introduction to the C3 linearization algorithm.
You can calculate it manually or use the built-in .mro() method on a class to inspect
its Method Resolution Order (MRO). In this chapter, we’ll follow the trail of the .mro()
method and see how this algorithm is implemented in CPython.

Algorithm Implementation
Preparation Before Merging

Since every class has a .mro() method, we can trace the implementation via the type
methods member of PyType Type:

// file: Objects/typeobject.c

static PyObject *
type_mro_impl(PyTypeObject *self)

{
PyObject *seq;
seq = mro_implementation(self);
if (seq != NULL &% !PyList Check(seq)) {
Py SETREF(seq, PySequence List(seq));
}
return seq;
}
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It looks like mro_implementation() returns a sequence, which is likely what we're
looking for:

// file: Objects/typeobject.c

static PyObject *
mro_implementation(PyTypeObject *type)

{
// ... omitted ...
PyObject *bases = lookup tp bases(type);
Py ssize t n = PyTuple GET SIZE(bases);
for (Py ssize t i = 0; i < n; i++) {
PyTypeObject *base = PyType CAST(PyTuple GET ITEM(bases, i));
if (lookup tp mro(base) == NULL) {
// ... error handling ...
}
assert(PyTuple Check(lookup tp mro(base)));
}
// ... omitted ...
}

First, it retrieves the direct bases of the current class. For example:

class A: pass
class B: pass
class C(A, B): pass

For class C, its direct base classes are A and B. If you follow the implementation of
lookup tp bases(), you'll see that the subsequent for loop uses the Lookup tp _mro()
function to check whether each base class has an MRO. If not, an error is raised.

Let’s look at how lookup_tp bases() and lookup_tp mro() are implemented:

// file: Objects/typeobject.c

static inline PyObject *
lookup tp bases(PyTypeObject *self)
{

return self->tp bases;
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static inline PyObject *
lookup tp mro(PyTypeObject *self)
{

return self->tp mro;

Pretty straightforward: they simply access the tp_bases and tp_mro members.
Moving further down:

// file: Objects/typeobject.c

// ... omitted ...
if (n==1) {
PyTypeObject *base = PyType CAST(PyTuple GET ITEM(bases, 0));
PyObject *base mro = lookup tp mro(base);
Py ssize t k = PyTuple GET SIZE(base mro);
PyObject *result = PyTuple New(k + 1);
if (result == NULL) {
return NULL;

}

PyTuple SET ITEM(result, 0, Py NewRef(type));
for (Py ssize t i = 0; i < k; i++) {
PyObject *cls = PyTuple GET ITEM(base mro, i);
PyTuple SET ITEM(result, i + 1, Py NewRef(cls));
}

return result;

}
// ... omitted ...

When n == 1, meaning there is only one base class, the function follows a simpler
flow: it creates an empty tuple, puts the current class at the first position, then iterates
over the parent’s MRO, appending each entry:

// file: Objects/typeobject.c

// ... omitted ...
PyObject **to merge = PyMem New(PyObject *, n + 1);
// ... error handling ...
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for (Py ssize t i = 0; i < n; i++) {
PyTypeObject *base = PyType CAST(PyTuple GET ITEM(bases, i));
to merge[i] = lookup tp mro(base);

}

to _merge[n] = bases;

PyObject *result = PylList New(1);

// ... error handling ...

PyList SET ITEM(result, 0, Py NewRef(type));

if (pmerge(result, to merge, n + 1) < 0) {
Py CLEAR(result);

}
PyMem Free(to merge);

return result;
// ... omitted ...

Here, the for loop aggregates the MROs of all base classes into the to_merge array
and adds the current class itself, preparing for the merging process.

Merging
The actual merging occurs in the pmerge () function:
// file: Objects/typeobject.c

static int
pmerge(PyObject *acc, PyObject **to merge, Py ssize t to merge size)
{

int res = 0;

Py ssize t i, j, empty cnt;

int *remain;

remain = PyMem New(int, to merge size);

// ... error handling ...
for (i = 0; i < to_merge size; i++)
remain[i] = 0;
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empty cnt = 0;

for

(i = 0; 1 < to merge size; i++) {
PyObject *candidate;

PyObject *cur tuple = to merge[i];

if (remain[i] >= PyTuple GET SIZE(cur tuple)) {
empty_cnt++;
continue;

}

candidate = PyTuple GET ITEM(cur tuple, remain[i]);
for (j = 0; j < to_merge size; j++) {
PyObject *j 1st = to merge[j];
if (tail contains(j_lst, remain[j], candidate))
goto skip;
}
res = PylList Append(acc, candidate);
if (res < 0)
goto out;

for (j = 0; j < to _merge size; j++) {
PyObject *j 1st = to merge[j];
if (remain[j] < PyTuple GET SIZE(j lst) &&
PyTuple GET ITEM(j lst, remain[j]) == candidate) {
remain[j]++;

}
}
goto again;
skip: ;
}

if (empty cnt != to_merge size) {

set _mro_error(to merge, to merge size, remain);
res = -1;
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out:
PyMem Free(remain);
return res;

The implementation here isn’t very hard to follow. It starts by allocating memory for
an array called remain and initializing it all to 0. This array will contain the current index
for each list that is being merged. The algorithm then selects the next best candidate and
uses the tail contains() function to check if this candidate appears later in any of the
other lists. If so, it skips this candidate with goto skip and tries the next one. If a “good
head” (a suitable candidate) is found, it is added to the result, and all pointers that point
to this entry are advanced by one. This process repeats until all elements are placed or
an error occurs.

If there are still elements left to process but no suitable candidate is found, an error is
returned. This essentially reproduces the manual calculation we explored in the previous
chapter. Next, let’s discuss the super () function, which is also closely related to MRO.

Family Feuds

Let’s start with a simple code example:

class Animal:
def sleep(self):
print("Zzzzz")

class Cat(Animal):
def sleep(self):
super().sleep()

kitty = Cat()
kitty.sleep()

If you have experience in other object-oriented languages, you can probably guess
that super().sleep() is calling the superclass’s . sleep() method. Running the code
indeed prints "Zzzzz". However, Python’s super () function is not entirely the same as
what you might have learned in other languages. Did you notice that it’s super (), not just
super? We'll revisit this point shortly. For now, let’s look at how super () is implemented.
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Super!
Let’s check the bytecode instructions:
8 4 LOAD_GLOBAL 0 (super)
14 LOAD DEREF 1 (__class )
16 LOAD FAST 0 (self)
18 LOAD_SUPER_ATTR 5 (NULLIself + sleep)
22 CALL 0
30 POP_TOP
32 RETURN_CONST 0 (None)

Here we encounter a LOAD_SUPER_ATTR 5 instruction we haven’t seen before. Tracing
into this instruction, you'll see it invokes the global super () function via PyObject
Vectorcall(), creating an instance. In fact, super in Python is a global function, but,
more accurately, it is itself a class:

>>> super
<class 'super'>

Just like int or str, it’s a built-in class. Using what we’ve learned before, you can
guess there’s a type named PySuper Type. We can follow the tp_init member of
PySuper_Type to see what happens when an instance is created:

// file: Objects/typeobject.c

static int
super_init(PyObject *self, PyObject *args, PyObject *kwds)
{
// ... omitted ...
if (super_init impl(self, type, obj) < 0) {
return -1;

}

return 0;
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Let’s go deeper into the actual implementation: super _init impl():
// file: Objects/typeobject.c

static inline int
super_init impl(PyObject *self, PyTypeObject *type, PyObject *obj) {
superobject *su = (superobject *)self;
PyTypeObject *obj type = NULL;
if (type == NULL) {
PyThreadState *tstate = PyThreadState GET();
_PyInterpreterFrame *frame = PyThreadState GetFrame(tstate);
if (frame == NULL) {
PyErr SetString(PyExc_RuntimeError,
"super(): no current frame");
return -1;
}
int res = super_init without args(frame, frame->f code,
&type, 8obj);

if (res < 0) {
return -1;

}

// ... omitted ...

Py XSETREF(su->type, (PyTypeObject*)Py NewRef(type));
Py XSETREF(su->obj, obj);

Py XSETREF(su->obj type, obj type);

return 0;

If super () is called without arguments, control goes into the super_init without
args() function and passes the current Frame and Code Object:

// file: Objects/typeobject.c

static int
super_init without args( PyInterpreterFrame *cframe, PyCodeObject *co,
PyTypeObject **type p, PyObject **obj p)
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// ... omitted ...
PyTypeObject *type = NULL;
int i = PyCode GetFirstFree(co);
for (; i < co->co_nlocalsplus; i++) {
PyObject *name = PyTuple GET ITEM(co->co localsplusnames, i);
if (_PyUnicode Equal(name, & Py ID(_class_))) {
PyObject *cell = PyFrame GetlLocalsArray(cframe)[i];
// ... error handling ...
type = (PyTypeObject *) PyCell GET(cell);
// ... error handling ...
break;

}

// ... omitted ...

*type_p = type;
*obj p = firstarg;
return 0;

This function retrieves the _class__ variable from the Code Object, which points

to the current class. So, in Python, when you call super () without arguments, it can still

determine the current class and object from the current frame.

Whose Child Is It?

So in the previous example, inside the Cat class, does super () produce an instance of

Cat or Animal? While from a result perspective it might seem like a superclass instance,

in reality, it’s neither. The super () function creates an instance of the PySuper Type

class, which acts as a proxy object with references to the current class and object. If you

inspect the object created by super (), you'll see something like:

<super: <class 'Cat'>, <Cat object>>
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It's neither Cat nor Animal; it’s the proxy object created by the super class. When
you call a method on this proxy, such as super().sleep(), it triggers the tp_getattro
member for PySuper Type:

// file: Objects/typeobject.c

static PyObject *
super_getattro(PyObject *self, PyObject *name)
{

superobject *su = (superobject *)self;

if (PyUnicode Check(name) &&
PyUnicode GET LENGTH(name) == 9 &&
_PyUnicode Equal(name, & Py ID(_ class_)))
return PyObject GenericGetAttr(self, name);

return do_super lookup(su, su->type, su->obj, su->obj type,
name, NULL);
}

Here, su is our proxy object. The function checks if we are accessing the class
attribute, for example, with super(). class_.Ifso, the generic PyObject
GenericGetAttr() function returns <class 'super'>. The length check for 9 is a small
performance trick: since the length of ' class_ ' is 9, checking length is faster than
comparing full strings.

If another attribute (like sleep) is being accessed, the function goes into do_super
lookup(). Before exploring this function, let me clarify the state of the su proxy object
and its members:

e suis the proxy object itself.

¢ su->typeis the class where super () was constructed. Since no
parameter was given, Python infers this from the current frame, in
this case, Cat.

o su->objis the current instance, i.e., self.

e su->obj typeis the actual type of the current object, also Cat here.
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At this point, type and obj_type happen to be the same, but they can differ. See what
happens if we add another level of inheritance:

class Animal:
def sleep(self):
print("Zzzzz")

class Cat(Animal):
def sleep(self):
super().sleep()

class Kitty(Cat):
pass

k = Kitty()
k.sleep()

When k. sleep() is called, the proxy object created by super () has the
following state:

o su->typeis the class where super () was called: Cat.
e su->objisk, the instance.
e su->obj typeisthe actual type of k, which is Kitty.
While here they seem the same, they may differ depending on the context. Now let’s
look at the do_super lookup() function:

// file: Objects/typeobject.c

static PyObject *
do_super lookup(superobject *su, PyTypeObject *su type, PyObject *su_obj,
PyTypeObject *su obj type, PyObject *name, int *method)

{
// ... omitted ...
res = super lookup descr(su type, su obj type, name);
// ... omitted ...

}
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This function makes use of the provided type and object information to resolve the

method. If you pursue _super lookup descr():
// file: Objects/typeobject.c

static PyObject *
_super_lookup descr(PyTypeObject *su_type, PyTypeObject *su obj type,
PyObject *name)
{
// ... omitted ...
mro = lookup tp mro(su_obj type);
// ... omitted ...

i++;

// ... omitted ...
do {
PyObject *obj = PyTuple GET ITEM(mro, i);
PyObject *dict = lookup tp dict(_PyType CAST(obj));
// ... omitted ...
res = PyDict GetItemWithError(dict, name);
// ... omitted ...
it++;

} while (i < n);

It starts looking in the MRO of su->obj type (in the previous example, Kitty), not
from the class where super () was called (Cat). The important line is i++, meaning the
search starts from the second element in the MRO, thus avoiding recursively retrieving
the same method and causing an infinite loop.

For those who have used other programming languages, it may seem
counterintuitive that the search starts from the type of the object itself rather than
directly from the superclass. But why did Python design it this way?
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Solving Family Feuds

Multiple inheritance can cause the Diamond Problem. For example:

class Animal:
def sleep(self):
print("Zzzzz")

class Bird(Animal):
def sleep(self):
print("I can sleep standing up.")

super().sleep()
class Fish(Animal):

def sleep(self):
print("I can sleep without closing my eyes.")

super().sleep()

class Cat(Bird, Fish):
def sleep(self):
print("Purr purr~")
super().sleep()

kitty = Cat()
kitty.sleep() # What gets printed?

What do you think this prints? The tricky part is figuring out who super () .sleep()
refers to in the Bird class. If you're thinking in terms of other languages, you might
expect it to refer to Animal.sleep().

Let’s consider the state of super () inside the Bird class:

e suis the proxy object.
e su->type is contextually inferred as the Bird class.
e su->objis the current instance, in this case, kitty.

e su->obj typeisthe actual class of the object, which is Cat.
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From the source code, we see that Python begins searching the MRO of su->obj
type (i.e., Cat), not the MRO of Bird. The MRO of Cat is Cat -> Bird -> Fish ->
Animal. Python will find the Bird class, then proceed to the next in line, which is Fish. As
a result, the output will be:

Purr purr~

I can sleep standing up.

I can sleep without closing my eyes.
172777

If you want a concise explanation of Python’s super (): it finds the current class’s
MRO and starts searching from the class after the current one in the MRO.

If the search simply moved from Bird directly to the superclass Animal, then Fish.
sleep() would be skipped, deviating from the intended inheritance order specified by
the MRO. Python uses the C3 linearization algorithm to get the correct MRO and, with
the design of super (), resolves the complications of multiple inheritance.

o Diamond problem: http://en.wikipedia.org/wiki/
Diamond _problem

Specifying the Superclass

In the above examples, super () was always called without arguments, but in fact,
super () can take parameters:

class Animal:
def sleep(self):
print("Zzzzz")

class Cat(Animal):
def sleep(self):
super(Cat, self).sleep()

This explicitly sets su->type to Cat and su->obj to self, so Python doesn’t need
to infer from the current frame. However, in most cases, the parameterless super () is
sufficient and more concise.
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Quick Quiz: Who Am |1?

Here’s a simple question for you. What does this code print?

class Person:
name = "Walter White"
def say my name(self):
print(self.name)

class Heisenberg(Person):
name = "Heisenberg"
def say my name(self):
super().say_my name()

heisenberg = Heisenberg()
heisenberg.say my name() # What will be printed?

You might expect "Walter White" from the Person class to be printed, but the result
is "Heisenberg".

Why? Think about who self points to inside the proxy object created by super (),
and the answer will be clear. :)

271



CHAPTER 27

The Generator Object
and the Yield Statement

Generators are a fascinating feature in Python. They allow you to produce values one at
a time, rather than generating all values at once. This trait makes generators particularly
useful when handling large datasets or infinite data collections. There are several ways to
create a generator in Python, and one common approach is to use the yield keyword to
define a generator function. For example:

def three numbers():
yield 520
yield 1450
yield 9527

nums = three numbers()
When you inspect nums, you'll find it is a generator object:

>>> type(nums)
<class 'generator'>

You can then use the built-in next () function to retrieve the next value, until there
are no more values to yield. In this chapter, we'll take a look at how generators are
implemented in Python.
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The Generator Class

Let’s first examine the bytecode of the above code, starting with the upper section:

0 0

1 2

4
6

7 8
10
12
20
22

RESUME

LOAD CONST
MAKE_FUNCTION
STORE_NAME

PUSH_NULL
LOAD NAME
CALL
STORE_NAME
RETURN_CONST

0

0 (<code object three numbers>)
0
0 (three_numbers)

0 (three numbers)
0

1 (nums)

1 (None)

We have previously seen these instructions—they are quite similar to defining a

regular function. However, the lower portion differs:

1

0 RETURN_GENERATOR

2 POP_TOP

10
12

16
18
20

24
26
28
30
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6 LOAD_CONST

YIELD VALUE
RESUME
POP_TOP

LOAD_CONST
YIELD VALUE
RESUME
POP_TOP

LOAD_CONST
YIELD VALUE
RESUME
POP_TOP
RETURN_CONST

(520)

NN

N

(1450)

(9527)

= W

0 (None)
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>> 32 CALL_INTRINSIC 1 3 (INTRINSIC STOPITERATION ERROR)
34 RERAISE 1
ExceptionTable:

4 to 30 -> 32 [0] lasti

Wow! There are several unfamiliar instructions, and the execution seems to jump
around. To keep things concise, let’s summarize first:

e The instruction RETURN_GENERATOR is fairly self-explanatory—it
creates a generator object.

o YIELD VALUE sends the current value from the generator back to
the caller and suspends the function’s execution. For example, in
the above example, yield 1 yields the value 1 to the caller, and the
function pauses at that point.

e RESUME resumes the suspended generator and continues execution
from the point where the YIELD VALUE instruction paused, usually
triggered by calling the built-in next () function or the generator’s
.send() method.

Let’s take a look at the RETURN_GENERATOR instruction first:
// file: Python/bytecodes.c

inst(RETURN_GENERATOR, (--)) {
// ... omitted ...
PyFunctionObject *func = (PyFunctionObject *)frame->f funcobj;
PyGenObject *gen = (PyGenObject *) Py MakeCoro(func);
// ... omitted ...

This instruction fetches the function object from the stack, then uses the Py
MakeCoro() function to build a generator object (where Coro is short for Coroutine).
Inside Py MakeCoro(), the make gen() function is called to actually create the
generator object:

// file: Objects/genobject.c

static PyObject *
make_gen(PyTypeObject *type, PyFunctionObject *func)
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{
PyCodeObject *code = (PyCodeObject *)func->func_code;

int slots = PyFrame NumSlotsForCodeObject(code);

PyGenObject *gen = PyObject GC NewVar(PyGenObject, type, slots);

if (gen == NULL) {
return NULL;

}

gen->gi frame state

gen->gi weakreflist

FRAME_CLEARED;
NULL;
gen->gi exc_state.exc_value = NULL;

gen->gi exc_state.previous_item = NULL;
assert(func->func_name != NULL);

gen->gi name = Py NewRef(func->func_name);
assert(func->func_qualname != NULL);

gen->gi qualname = Py NewRef(func->func_qualname);
_PyObject GC_TRACK(gen);

return (PyObject *)gen;

To put it simply, this process converts a function object into a generator. However,
this would be too much of an oversimplification. Here, the function first calculates how
much space the object requires and then uses PyObject GC_NewVar () to allocate a
generator object. The generator can have several states:

// file: Include/internal/pycore frame.h

typedef enum framestate {
FRAME_CREATED = -2,
FRAME_SUSPENDED = -1,
FRAME_EXECUTING = o,
FRAME_COMPLETED = 1,
FRAME_CLEARED = 4

} PyFrameState;

A newly created generator has the state FRAME_CLEARED, meaning it hasn’t been
executed yet.
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That said, you may have heard that generators are supposed to use less memory.
While this is generally true, you may notice here that generators do need memory, and
sometimes more, since they must store various states. The main benefit of generators
is their “lazy evaluation” property—they only generate the next value when it’s needed,
rather than all values at once. For large or even infinite containers, this can indeed save
memory since it avoids expanding all items at once, but for small collections, generators
might actually use more memory than a standard list or tuple due to the overhead of
maintaining state.

Let’s see what the PyGenObject structure looks like:

// file: Include/cpython/genobject.h

typedef struct {
_PyGenObject HEAD(gi)
} PyGenObject;

After macro expansion, it becomes:

typedef struct {
PyObject ob_base;
PyObject *gi weakreflist;
PyObject *gi _name;
PyObject *gi qualname;

_PyErr StackItem gi exc_state;
PyObject *gi origin or finalizer;

char gi_hooks_inited;
char gi_closed;
char gi running_async;

int8 t gi frame state;

PyObject *gi iframe[1];
} PyGenObject;

Here, gi_name and gi_qualname are the generator’s name fields, gi_frame_state
indicates the current execution state, and gi_exc_state is for exception handling (which

we'll clarify with examples soon). The gi_iframe[1] at the end—this flexible array

member—is a pattern we've encountered before.
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yield, Please!

In the bytecode listing above, notice the instruction YIELD_VALUE 1. As the name
implies, this corresponds to the yield keyword. Let’s see what it does:

// file: Python/bytecodes.c

inst(YIELD VALUE, (retval -- unused)) {
assert(frame != &entry frame);
PyGenObject *gen = PyFrame GetGenerator(frame);
gen->gi frame state = FRAME_SUSPENDED;
_PyFrame_SetStackPointer(frame, stack pointer - 1);
tstate->exc_info = gen->gi exc_state.previous item;
gen->gi exc_state.previous item = NULL;
_Py LeaveRecursiveCallPy(tstate);
_PyInterpreterfFrame *gen frame = frame;
frame = cframe.current frame = frame->previous;
gen_frame->previous = NULL;
_PyFrame_StackPush(frame, retval);
goto resume frame;

What happens here is that the generator object associated with the current Frame is
retrieved. Its state is set to suspended (FRAME_SUSPENDED), because yield returns a value,
so the stack pointer needs adjusting. In between, some exception-handling takes place
(to be discussed in detail soon). Lastly, PyFrame StackPush(frame, retval) places the
return value on the previous Frame, i.e., the Frame of the caller. As described earlier, the
YIELD VALUE instruction yields the value back to the caller and suspends the function’s
execution.

Let’s revisit these two lines, which handle exceptions:

tstate->exc_info = gen->gi exc_state.previous item;
gen->gi exc_state.previous item = NULL;

These lines transfer the exception state to ensure exceptions are appropriately
handled. What does this mean? Here’s an example:
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def simple generator():
try:
yield 100
raise ValueError("Hey Hey Hey")
except:
yield "Hey"

gen = simple generator()
print(next(gen)) # Prints 100
print(next(gen)) # What does this print?

The first call to next () prints 100 as expected. Despite expectations that the
generator is now exhausted, a second call to next () actually prints "Hey", which arises
from the yield inside the except block. What's going on?

On the first next (), the generator starts, encounters yield 100, suspends execution,
and returns 100. At this moment, the generator is paused (FRAME_SUSPENDED) and
hasn’t yet reached the raise statement. When next () is called a second time, execution
resumes where it left off. The raise ValueError("Hey Hey Hey") triggers an exception,
which is caught by the generator’s except block. Inside this block, another yield outputs
"Hey", and execution suspends again.

The generator stores the exception state in previous_item, allowing correct
exception handling when the generator resumes.

Next, Please!

To obtain the next value from a generator, you can use Python'’s built-in next ()
function—but how is this actually implemented?

// file: Python/bltinmodule.c

static PyObject *
builtin next impl(PyObject *module, PyObject *iterator,
PyObject *default value)

PyObject *res;

// ... error handling ...
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res = (*Py TYPE(iterator)->tp iternext)(iterator);
if (res != NULL) {
return res;
} else if (default value != NULL) {
if (PyErr Occurred()) {
if (!PyErr ExceptionMatches(PyExc_StopIteration))
return NULL;
PyErr Clear();
}
return Py NewRef(default value);
} else if (PyErr Occurred()) {
return NULL;
} else {
PyErr SetNone(PyExc_ StopIteration);
return NULL;

This function looks up the tp_iternext slot. Let’s follow it to the definition for
PyGen Type:

// file: Objects/genobject.c

static PyObject *
gen_iternext(PyGenObject *gen)
{
PyObject *result;
assert(PyGen CheckExact(gen) Il PyCoro CheckExact(gen));
if (gen_send ex2(gen, NULL, &result, 0, 0) == PYGEN RETURN) {
if (result != Py None) {
_PyGen_SetStopIterationValue(result);
}
Py CLEAR(result);

}

return result;
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The real focus here is on the gen_send_ex2() function, but before going further, let’s
look at this check:

if (result != Py None) {
_PyGen_SetStopIterationValue(result);

This may seem counterintuitive: Whyis _PyGen_SetStopIterationValue() called
when result is not Py _None? Consider the outer if condition:

if (gen_send ex2(gen, NULL, &result, 0, 0) == PYGEN RETURN) {
// ... omitted ...

The gen_send_ex2 function executes the generator’s Frame. If execution completes,
itreturns PYGEN_RETURN, and result contains the returned value.

Normally, you wouldn’t explicitly write a return in a generator—it just raises
StopIteration internally when exhausted. But if you do write an explicit return
statement inside a generator, such as:

def simple gen():
yield 100
return 9999

During the call to gen_send_ex2(), result is set to 9999. If you try this in the REPL:

>>> s = simple_gen()
>>> next(s)
100

The first call prints 100 as expected. Now, the generator should be exhausted, and
another call to next(s) raises an exception, but notice the result:

>>> next(s)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration: 9999

The StopIteration exception includes the value 9999. That’s exactly what _PyGen_
SetStopIterationValue(result) accomplishes.
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So, whatis gen_send_ex2() mainly responsible for?

o Ithandles the generator’s behavior based on its current state—such
as FRAME_CREATED, FRAME_EXECUTING, or FRAME_COMPLETED.

o When execution begins, it sets the state to FRAME_EXECUTING and uses
_PyEval EvalFrame() to execute the generator’s Frame.

It must be said—using generators is quite straightforward, but the implementation
under the hood is rather complex. It can be quite dizzying to follow...orz.
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CHAPTER 28

How lterators Work
Internally

Iterators are widely used in Python. They let us traverse various “containers” without
having to use a conventional for loop, as is common in other programming languages.
These so-called containers are not limited to lists—dictionaries, strings, and ranges
can all be iterated over in a similar way. In this chapter, we’ll explore how iterators are
implemented.

The Iterator Protocol

Python features three related concepts: iteration, iterable, and iterator. Let’s do a

quick recap:

o Iteration: A noun referring to the process of looping through all the
elements inside an object.

o Iterable: An adjective describing an object that can be iterated over;
in this chapter, “iterable object” refers to this.

o Iterator: A noun representing a container-like object that lets us
traverse its elements using specific methods.

According to Python’s definition, any object that implements the “iterator protocol”
qualifies as an iterator. The iterator protocol is straightforward: as long as an object
implementsthe _iter ()and next () magic methods, it is considered an iterator.
This is the Python-level definition; next, we'll look at how it is implemented in CPython.

To create an iterator in Python, you can use the built-in function iter():

iter([9, 5, 2, 7])
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Let’s start by looking at the implementation of this function in the source code:
// file: Python/clinic/bltinmodule.c.h

static PyObject *
builtin iter(PyObject *module, PyObject *const *args, Py ssize t nargs)
{

PyObject *return value = NULL;

PyObject *object;

PyObject *sentinel = NULL;

if (! PyArg CheckPositional("iter", nargs, 1, 2)) {
goto exit;
}
object = args[o0];
if (nargs < 2) {
goto skip optional;
}
sentinel = args[1];
skip optional:
return value = builtin iter impl(module, object, sentinel);

exit:
return return value;

It appears that the actual implementation resides in the builtin_iter impl()
function:

// file: Python/bltinmodule.c

static PyObject *
builtin iter impl(PyObject *module, PyObject *object, PyObject *sentinel)
{
if (sentinel == NULL)
return PyObject GetIter(object);
if (!PyCallable Check(object)) {
PyErr SetString(PyExc_TypeError,
"iter(object, sentinel): object must be callable");
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return NULL;

}
return PyCalllter New(object, sentinel);

This is fairly straightforward: if a “sentinel” is not provided, it directly calls PyObject
GetIter(); otherwise, it calls PyCallIter New().Butwhat exactly does the sentinel
mean here?

Halt! Password, Please!

The sentinel means that if the iterator returns a value equal to the sentinel, iteration
should stop. Let’s look at an example:

from random import randint
numbers = iter(lambda: randint(1, 10), 7)

for num in numbers:
print(num)

Since I've passed 7 as the second argument to iter (), the above code will
continually generate random numbers between 1 and 10 until the number 7 is produced.
If no sentinel is provided, the iteration would continue indefinitely.

Let's start by looking at the simpler PyCallIter New() function:

// file: Objects/iterobject.c

PyObject *
PyCallIter New(PyObject *callable, PyObject *sentinel)
{

calliterobject *it;

it = PyObject GC New(calliterobject, &PyCallIter Type);

if (it == NULL)

return NULL;

it->it callable = Py NewRef(callable);

it->it sentinel = Py NewRef(sentinel);

_PyObject GC_TRACK(it);

return (PyObject *)it;
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Here, an object of structure type calliterobject is created to store the iterator’s
information:

// file: Objects/iterobject.c

typedef struct {
PyObject HEAD
PyObject *it callable;
PyObject *it sentinel;
} calliterobject;

This structure is fairly simple. Let’s also look at the structure of PyCallIter Type:
// file: Objects/iterobject.c

PyTypeObject PyCallIter Type = {
PyVarObject HEAD INIT(&PyType Type, 0)

"callable iterator", /* tp_name */
sizeof(calliterobject), /* tp basicsize */

0, /* tp itemsize */

// ... omitted ...

0, /* tp _richcompare */

0, /* tp weaklistoffset */
PyObject SelfIter, /* tp iter */
(iternextfunc)calliter iternext, /* tp iternext */
calliter methods, /* tp_methods */

};

The key points here are tp_iter and tp_iternext. The tp_iter member returns
the iterator object itself, and tp_iternext is responsible for returning the next element.
These directly correspond to the __iter and _ next _methods mentioned earlier in
the iterator protocol.

// file: Objects/object.c

PyObject *
PyObject SelfIter(PyObject *obj)
{

return Py NewRef(obj);
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This simply returns the iterator object itself. Now let’s look at the calliter

iternext() function:

// file: Objects/iterobject.c

static PyObject *
calliter iternext(calliterobject *it)

{

PyObject *result;
// ... error handling ...

result = PyObject CallNoArgs(it->it callable);
if (result != NULL && it->it sentinel != NULL){
int ok;

ok = PyObject RichCompareBool(it->it sentinel, result, Py EQ);
if (ok == 0) {
return result;

}

if (ok > 0) {
Py CLEAR(it->it callable);
Py CLEAR(it->it sentinel);

}
else if (PyErr ExceptionMatches(PyExc_StopIteration)) {

PyErr Clear();
Py CLEAR(it->it callable);
Py CLEAR(it->it sentinel);
}
Py XDECREF(result);
return NULL;

In the middle, it uses the PyObject RichCompareBool() function to check if the

returned value equals the sentinel. If it does, iteration stops and both it _callable and

it _sentinel are cleared. Otherwise, it returns the element.
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Another noteworthy detail: if the iterator raises StopIteration, PyErr Clear() is
called to clear the error status, and iteration stops. This is why, when we fetch the next
item using next () and there is nothing left, StopIteration is thrown. But within a for
loop or list comprehension, this error is internally handled and does not propagate.

This process is fairly easy to understand. Next, let’s examine another function:
PyObject GetIter(), which is a bit more complex:

// file: Objects/abstract.c

PyObject *

PyObject GetIter(PyObject *o)

{
PyTypeObject *t = Py TYPE(0);
getiterfunc f;

f = t->tp_iter;
if (f == NULL) {
if (PySequence Check(o))
return PySeqIlter New(o);
return type error("'%.200s' object is not iterable", o);

}
else {
PyObject *res = (*f)(0);
if (res != NULL & !PyIter Check(res)) {
PyErr Format(PyExc_ TypeError,
"iter() returned non-iterator "
"of type '%.100s'",
Py TYPE(res)->tp_name);
Py SETREF(res, NULL);
}
return res;
}

It first checks whether the tp_iter member is implemented. If so, it calls it directly:

PyObject *res = (*f)(o);

288



CHAPTER 28  HOW ITERATORS WORK INTERNALLY

This line does exactly that. There are some interesting details here, but let’s come
back to them.

If the tp_iter member is not implemented, it checks whether the object is a
sequence. Ifit is, it creates a general-purpose sequence iterator using PySeqIter New().
Let’s look at its implementation:

// file: Objects/iterobject.c

PyObject *
PySeqIter New(PyObject *seq)
{

seqiterobject *it;

if (!PySequence Check(seq)) {
PyErr BadInternalCall();
return NULL;
}
it = PyObject GC New(seqiterobject, &PySeqIter Type);
if (it == NULL)
return NULL;
it->it _index = 0;
it->it seq = Py NewRef(seq);
_PyObject GC_TRACK(it);
return (PyObject *)it;

This function creates a seqiterobject structure, defined as follows:
// file: Objects/iterobject.c
typedef struct {

PyObject_HEAD

Py ssize t it index;

PyObject *it seq;
} seqgiterobject;
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it _index keeps track of the current position during iteration, while it_seq points to
the sequence object being iterated. Let’s also check the structure for PySeqIter Type:

// file: Objects/iterobject.c

PyTypeObject PySeqIter Type = {
PyVarObject HEAD INIT(&PyType Type, 0)

"iterator", /* tp_name */

sizeof (seqgiterobject), /* tp basicsize */

// ... omitted ...

0, /* tp_richcompare */

0, /* tp weaklistoffset */
PyObject SelfIter, /* tp iter */

iter iternext, /* tp_iternext */
seqiter methods, /* tp_methods */

0, /* tp_members */

b

Here, the tp_iter member also just returns itself. Let’s look at the implementation
for tp_iternext:

// file: Objects/iterobject.c

static PyObject *
iter iternext(PyObject *iterator)
{

segiterobject *it;

PyObject *seq;

PyObject *result;

assert(PySeqIter Check(iterator));
it = (seqiterobject *)iterator;
seq = it->it segq;

// ... error handling ...

result = PySequence GetItem(seq, it->it_index);
if (result != NULL) {

it->it_index++;

return result;
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if (PyErr ExceptionMatches(PyExc_IndexError) I
PyErr ExceptionMatches(PyExc_StopIteration))

{
PyErr Clear();
it->it seq = NULL;
Py DECREF(seq);

}

return NULL;

The PySequence_GetItem() function retrieves the element at the index specified
by it_index. If it is successful, the result is returned and the index is incremented. If
an IndexError or StopIteration occurs, PyErr Clear() is called and iteration stops,
without raising an exception.

Different Types of Iterators?

When you pass different iterable objects to the iter () function, you'll receive different
types of iterator objects. Let’s take a look at the various iterator objects that can be
produced:

>>> iter([])
<list_iterator object>

>>> iter(range(0))
<range_iterator object>

>>> iter({})
<dict_keyiterator object>

>>> iter('hello")
<str ascii iterator object>

>>> iter('Dragon Ball")
<str_iterator object>
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Why are there so many types? This is because different types of iterable objects have
their own iterator implementations. In the PyObject GetIter() function, this line:

PyObject *res = (*f)(o0);

calls the implementation of the tp_iter member and passes the current iterable object
to it. Different data types may have different implementations of tp_iter. For example,
here is the implementation for lists:

// file: Objects/listobject.c

static PyObject *
list_iter(PyObject *seq)
{

_PyListIterObject *it;

// ... error handling ...
it = PyObject GC New( PyListIterObject, &PyListIter Type);
if (it == NULL)
return NULL;
it->it_index = 0;
it->it seq = (PyListObject *)Py NewRef(seq);
_PyObject GC_TRACK(it);
return (PyObject *)it;

This function creates an iterator object of type PyListIter Type, whose
tp_iternext is implemented as follows:

// file: Objects/listobject.c

static PyObject *
listiter next( PyListIterObject *it)
{

PyListObject *seq;

PyObject *item;

// ... error handling ...
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if (it->it _index < PylList GET SIZE(seq)) {
item = PylList GET ITEM(seq, it->it index);
++it->it_index;
return Py NewRef(item);

}

it->it _seq = NULL;
Py DECREF(seq);
return NULL;

The implementation of tp_iternext for lists is relatively simple. If the input is a
string, the iterator created depends on whether the string contains only ASCII characters
or uses other encodings. Dictionaries and ranges have their unique mechanisms as well.
Therefore, different iterator objects are seen as above.

If you're interested, you can follow the same logic to trace the tp_iternext
implementations of iterator objects produced by ranges, strings, and dictionaries. This
will help you understand how different iterator objects work.

Both generators covered in the previous chapter and the iterators described here can
be used with the next () function, but the implementation of iterators is much simpler. :)
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Understanding
Descriptors in Python

Descriptors are a fascinating and important feature in Python. Many seemingly
straightforward syntax elements are actually built upon descriptors, even though you
might not realize that you are already using them. Descriptors allow us to perform
additional actions behind the scenes when we read, set, or invoke attributes and
methods on objects. Furthermore, they form the foundation for many functionalities
that we now take for granted.

Descriptors are categorized into two types: data descriptors and non-data
descriptors. The difference lies in which specific methods they implement. In this
chapter, we'll explore how descriptors are implemented in CPython.

When Calling Methods

In CPython, when you want to retrieve an attribute from an object, the type’s tp

getattro member determines how the attribute is fetched. In most cases, tp_getattro

points to the PyObject GenericGetAttr() function. Judging from its name, you can
probably guess that this is a generic attribute accessor.
Let me give you an example:

class Cat:
race = "Feline"

def init (self, name, age):
self.name = name
self.age = age

kitty = Cat("Kitty", 18)
print(kitty.name)

© Chien-Lung Kao 2025
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What happens when the last line tries to print kitty.name? Or, to phrase it
differently: How is this . name attribute actually found? Let’s examine the bytecode:

4 LOAD BUILD CLASS

6 LOAD CONST 0 (<code object Cat>)
8 MAKE_FUNCTION 0
10 LOAD_CONST 1 ('Cat")
12 CALL 2
20 STORE_NAME 0 (Cat)
9 22 PUSH_NULL
24 LOAD_NAME 0 (Cat)
26 LOAD CONST 2 ("HIFE)
28 LOAD CONST 3 (18)
30 CALL 2
38 STORE_NAME 1 (kitty)
10 40 PUSH NULL
42 LOAD NAME 2 (print)
44 LOAD NAME 1 (kitty)
46 LOAD ATTR 6 (name)
66 CALL 1
74 POP_TOP
76 RETURN_CONST 4 (None)

Most of these instructions we’ve covered previously, so nothing unusual there. What
stands out is that when reading the .name attribute, the LOAD_ATTR instruction is used.
This instruction is responsible for fetching the name attribute from the kitty object. As
discussed in earlier chapters, if we trace what this instruction does, it eventually leads to
the PyObject GetMethod() function. This function spans several lines and contains a
sequence of logic checks. Let’s go through it step by step.

Attribute Lookup Process
// file: Objects/object.c

// ... omitted ...
PyTypeObject *tp = Py TYPE(obj);
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// ... omitted ...
PyObject *descr = PyType Lookup(tp, name);
descrgetfunc f = NULL;
if (descr != NULL) {
Py INCREF(descr);
if (_PyType HasFeature(Py TYPE(descr), Py TPFLAGS METHOD DESCRIPTOR)) {
meth _found = 1;
} else {
f = Py TYPE(descr)->tp descr get;
if (f != NULL && PyDescr IsData(descr)) {
*method = f(descr, obj, (PyObject *)Py TYPE(obj));
Py DECREF(descr);
return 0;

}
// ... omitted ...

Py TPFLAGS _METHOD DESCRIPTORis a flag used to mark whether an object has the
“method descriptor” property. If it does, it’s noted, and the lookup continues. We’ll
discuss method descriptors in more detail later.

Next, we focus on the line f = Py TYPE(descr)->tp descr get. If the descriptor
implements the tp_descr_get member and is a data descriptor, its function is called
and its result returned—no further lookups are done. The function used to determine
whether the descriptor is a data descriptor, PyDescr IsData(), is straightforward:

// file: Objects/descrobject.c

int
PyDescr IsData(PyObject *ob)
{
return Py TYPE(ob)->tp descr set != NULL;
}

297



CHAPTER 29  UNDERSTANDING DESCRIPTORS IN PYTHON

It simply checks if tp_descr_set has been implemented. If so, it is a data descriptor;
if not, it’s a non-data descriptor. This matches our conceptual understanding of data and
non-data descriptors. The following section is a bit longer:

// file: Objects/object.c

// ... omitted ...
PyObject *dict;

if ((tp->tp_flags & Py TPFLAGS MANAGED DICT)) {
PyDictOrValues* dorv _ptr = PyObject DictOrValuesPointer(obj);
if (_PyDictOrValues IsValues(*dorv ptr)) {
PyDictValues *values = PyDictOrValues GetValues(*dorv ptr);
PyObject *attr = PyObject GetInstanceAttribute(obj, values, name);
if (attr != NULL) {
*method = attr;
Py XDECREF(descr);

return O;
}
dict = NULL;
}
else {
dict = dorv_ptr->dict;
}
}
else {
PyObject **dictptr = PyObject ComputedDictPointer(obj);
if (dictptr != NULL) {
dict = *dictptr;
}
else {
dict = NULL;
}
}

if (dict != NULL) {
Py INCREF(dict);
PyObject *attr = PyDict GetItemWithError(dict, name);
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if (attr != NULL) {
*method = Py NewRef(attr);
Py DECREF(dict);
Py XDECREF(descr);
return O;

}
Py DECREF(dict);

if (PyErr Occurred()) {
Py _XDECREF(descr);
return O;

}
// ... omitted ...

Although this snippet looks complex, it’s essentially doing one thing: it tries to find
the name attribute in the instance’s dictionary. If found, it returns it; if not, it continues
the search. Moving on:

// file: Objects/object.c

// ... omitted ...

if (meth_found) {
*method = descr;
return 1;

}
// ... omitted ...

Recall the earlier check for method descriptors? If found, the method descriptor is
set to the method variable, and the search stops. Otherwise, lookup proceeds:

// file: Objects/object.c

// ... omitted ...

if (f != NULL) {
*method = f(descr, obj, (PyObject *)Py TYPE(obj));
Py DECREF(descr);
return 0;

}

// ... omitted ...
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By this point, f represents a non-method, non-data descriptor—it is, in fact, a non-
data descriptor. At this step, the _get () method of the descriptor is called and its
result returned. If the object is not even a descriptor:

// file: Objects/object.c

if (descr != NULL) {
*method = descr;
return 0;

}
// ... omitted ...

Here, descr is most likely the class attribute found by PyType Lookup(tp, name).In
our earlier example, this would be the race attribute of the Cat class.
If nothing is found during the above process, the final step is straightforward:

// ... omitted ...

PyErr Format(PyExc AttributeError,
"'%.100s' object has no attribute '%U'",
tp->tp_name, name);

set attribute error context(obj, name);
return O;
// ... omitted ...

An AttributeError is raised—end of process!

Process Summary

Let me summarize the entire attribute lookup process and clarify some terminology:
e Descriptor (D)
o Data descriptor (DD)
e Non-data descriptor (NDD)
e Method descriptor (MD)
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Process:

1.

Check if the attribute is a D:

o 1A.Ifitis,anditisaDD, thenits get () method is called and
its result returned.

o 1B.Ifitisjust an MD, note its presence and continue searching.
Search the object’s _dict__for the attribute:

o 2A.Iffound, return it.

e 2B.Ifnot, proceed to step 4.

If step 1B found an MD, set it to the method variable and stop
the search.

For a NDD found in step 1A, callits __get () method and return
the result.

If none of the above, assume it is a normal class attribute (not a D)
and return it directly.

If still not found, raise AttributeError.

Method Descriptors

In Python, method descriptors are a class of descriptors that implement part of

the descriptor protocol; in particular, they only implement the _get () method.

Therefore, they can also be considered a type of non-data descriptor.

How is a method descriptor defined in Python? It’s actually quite simple, and you

probably already know how. Here’s an example:

class Cat:
def meow(self):
print("Meow Meow")

kitty = Cat()
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That’s it. Wait, isn’t that just a regular instance method? Yes, but it is a method
descriptor. Let me demonstrate in the REPL:

>>> type(Cat.meow)
<class 'function'>
>>> hasattr(Cat.meow,
True

_get ")

>>> kitty = Cat()

>>> type(kitty.meow)

<class 'method'>

>>> hasattr(kitty.meow, ' get ')
True

See? Both functions and methods havea _get () method—this is the defining
feature of a method descriptor.

When a class function is accessed, its__get () method is called, returning a bound
method. This bound method automatically includes the instance (self) or class (cls) as
the first argument. So writing the following two ways is equivalent:

>>> kitty.meow()

Meow Meow

>>> Cat.meow. get (kitty, Cat)()
Meow Meow

// file: Objects/funcobject.c

PyTypeObject PyFunction Type = {
PyVarObject HEAD INIT(&PyType Type, 0)
"function",
sizeof(PyFunctionObject),

// ... omitted ...

0, /* tp dict */

func_descr_get, /* tp_descr get */
0, /* tp descr set */
offsetof(PyFunctionObject, func dict), /* tp dictoffset */
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0, /* tp init */
0, /* tp _alloc */
func_new, /* tp_new */

¥
The implementation of its tp_descr_get member is as follows:

static PyObject *
func_descr_get(PyObject *func, PyObject *obj, PyObject *type)
{
if (obj == Py None Il obj == NULL) {
return Py NewRef(func);

}
return PyMethod New(func, obj);

If an instance is passed in, a bound method is returned; otherwise, the original
function is returned. Whether the instance is our adorable kitty or the Cat class itself
depends on how the method is called.

Reflecting on step 3 of our process summary: if the attribute is a method descriptor,
it is set directly to the method variable, and the lookup stops. This is why, when accessing
the kitty.meow attribute, if there is a meow method defined via def, it will correctly find
the method.

In conclusion, descriptors are truly everywhere in Python. You are already using
them, even if you aren’t consciously aware of their presence.
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Exception Handling
Internals in CPython

Computer programs might not make mistakes, but humans do—and often. Some are
intentional, some accidental, and some entirely unforeseen. Regardless of the situation,
we need a mechanism to handle these issues, and that’s where exception handling
comes in.

Most programming languages have similar constructs. In Python, exceptions are
handled using the try...except... keywords. In this chapter, we’'ll look at the reality
behind exception handling—specifically, how it's implemented in CPython.

Exception Handling

Let’s start with a simple example:

try:
1/ 0 # This line will cause an error
print("Hello World")

except Exception as e:
print(f"Something went wrong! {e}")

When you run the code above, the division by zero (1/0) triggers a
ZeroDivisionError exception, which is caught and handled in the except block. But
how does this work? Let’s inspect the bytecode generated for this code. Since it’s a bit
lengthy, we’ll break it down in parts:

2 4 LOAD_CONST 0 (1)
6 LOAD_CONST 1 (0)
8 BINARY OP 11 (/)
12 POP_TOP
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3 14 PUSH NULL
16 LOAD NAME 0 (print)
18 LOAD_CONST 2 ('Hello World")
20 CALL 1
28 POP_TOP
30 RETURN_CONST 4 (None)

>> 32 PUSH_EXC_INFO
// ... omitted ...

This appears fairly straightforward, except for the PUSH_EXC_INFO instruction at the
end—there’s nothing else particularly new. The two lines in the try block correspond
directly to bytecode instructions. Although we know that the BINARY_OP instruction for
division will cause a runtime error, this is only determined during execution, not during
compilation. Unless there is a syntax error, bytecode compilation simply generates
instructions; whether an error occurs or not will only be known when the Python VM
executes the bytecode.

Stacking Up

So, what does the PUSH_EXC_INFO instruction do? The name suggests it pushes exception
information onto a stack. Let’s check the source code:

// file: Python/bytecodes.c

inst(PUSH_EXC_INFO, (new_exc -- prev_exc, new exc)) {
_PyErr StackItem *exc_info = tstate->exc_info;
if (exc_info->exc_value != NULL) {
prev_exc = exc_info->exc_value;

}
else {

prev_exc = Py None;
}

assert(PyExceptionInstance Check(new exc));
exc_info->exc_value = Py NewRef(new exc);
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This instruction saves the new exception new_exc into the current thread’s exception
stack (exc_info->exc_value). If there was already an existing unhandled exception, it is
taken out and stored in prev_exc for subsequent use.

Why do we need an exception stack? Because exception handling does not always
resolve all issues: if an error occurs within an except block, it can propagate to another
exception handler, and this process may repeat. Thus, having a stack is sensible. So, what
is_PyErr StackItem? Let’s look at this structure:

// file: Include/cpython/pystate.h

typedef struct err stackitem {

PyObject *exc_value;

struct err stackitem *previous_item;
} _PyErr StackItem;

Aside from the exc_value member we just saw, it also has a previous_item member
pointing to the previous stack item. This allows for exception chaining, so exceptions can
be processed layer by layer during handling.

Exception Table

Normally, we would continue examining the flow, but let’s scroll to the bottom of the
bytecode to see something new—the ExceptionTable:

ExceptionTable:
4 to 28 -> 32 [0]
32 to 40 -> 84 [1] lasti
42 to 62 -> 74 [1] lasti
74 to 82 -> 84 [1] lasti

We may not have seen this before, but its meaning is fairly easy to understand. For
instance, 4 to 28 -> 32 [0] means that if any instruction from bytecode 4 to 28 throws
an exception, execution will jump to instruction 32. Similarly, the other lines represent
exception handling for other ranges. The indexes like 32 [0], 74 [1], and so on likely
refer to different exception handlers. In the same try block, there may be multiple
except blocks, so this points to which handler will process a given exception.
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Entry Portals

Looking at the bytecode, instructions at positions 32 (PUSH_EXC_INFO0), 74 (LOAD_CONST),
and 84 (COPY) are preceded by a >> marker. Instruction 82 (RERAISE) also has this, but
we'll return to that later. The >> marker designates an “entry portal”—for our example,
it’s the start of an exception handling block. This is not unique to try...except...; even
if...else... can contain the >> marker. For example:

a = 100

if a > o:
print("Positive")

else:
print("Negative")

The compiled bytecode looks like this:

// ... omitted ...
2 6 LOAD_NAME 0 (a)
8 LOAD_CONST 1 (0)
10 COMPARE_OP 68 (>)
14 POP_JUMP_IF FALSE 9 (to 34)

// ... omitted ...
5 >> 34 PUSH_NULL

36 LOAD_NAME 1 (print)
38 LOAD_CONST 3 ('Negative')
40 CALL 1

// ... omitted ...

Depending on the result of the test, execution “jumps” to different instructions. Our
focus, however, is exception handling.

Exception Type Matching

Now, we know the BINARY OP instruction can cause an exception at runtime. According
to the ExceptionTable, execution will jump to instruction 32, push the exception onto the
stack, and continue:
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4 34 LOAD_NAME 1 (Exception)
36 CHECK_EXC_MATCH
38 POP_JUMP_TIF FALSE 21 (to 82)
40 STORE_NAME 2 (e)

Entering the except block, let’s focus on the CHECK_EXC_MATCH instruction:
// file: Python/bytecodes.c

inst(CHECK_EXC_MATCH, (left, right -- left, b)) {
assert(PyExceptionInstance Check(left));
if (check except type valid(tstate, right) < 0) {
DECREF_INPUTS();
ERROR _IF(true, error);

}

int res = PyErr GivenExceptionMatches(left, right);
DECREF_INPUTS();
b = res ? Py True : Py False;

Here, left is the caught exception instance—in our example, it would be a
ZeroDivisionError object. right is the exception type you're trying to match—in our
case, it’s Exception. This instruction checks whether left is a subclass of (or matches)
right. If yes, it returns Py True; otherwise, it returns Py False, corresponding to
Python’s True and False. Also, left remains on the stack for the next instruction.

Most textbooks (including my own) stress that you should catch specific exception
types—i.e., prefer except ZeroDivisionError as e: instead of catching the generic
Exception.Itook a shortcut in this example and simply caught all exceptions, so here,
left is the current exception value (ZeroDivisionError) and right is Exception
Matching these, b will be Py True (Python’s True).

But what do we do with this Boolean value? The next instruction, POP_JUMP_IF _
FALSE 21, is self-explanatory:

// file: Python/bytecodes.c

inst(POP_JUMP_IF_FALSE, (cond -- )) {
if (Py IsFalse(cond)) {
JUMPBY (oparg) ;
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else if (!Py IsTrue(cond)) {
int err = PyObject IsTrue(cond);
DECREF_INPUTS();
if (err == 0) {

JUMPBY (oparg);
}
else {

ERROR_IF(err < 0, error);
}

Since our computed value is False, we’'d jump to the instruction indicated, which in
this case is RERAISE 0. This re-raises the exception so that the next handler can attempt
to handle it. However, since we actually get True, we proceed to the next instruction,
which stores the exception instance (left) into the variable e.

Handling the Exception
Continuing:

5 42 PUSH_NULL
44 LOAD_NAME 0 (print)
46 LOAD CONST 3 ('Something went wrong! ')
48 LOAD_NAME 2 (e)
50 FORMAT VALUE 0
52 BUILD_STRING 2
1

54 CALL

62 POP_TOP

64 POP_EXCEPT

66 LOAD_CONST 4 (None)

68 STORE_NAME 2 (e)

70 DELETE_NAME 2 (e)

72 RETURN_CONST 4 (None)
>> 74 LOAD_CONST 4 (None)

The upper part assembles the error message string. There’s a new instruction here:
POP_EXCEPT:

310



CHAPTER 30  EXCEPTION HANDLING INTERNALS IN CPYTHON

// file: Python/bytecodes.c

inst(POP_EXCEPT, (exc_value -- )) {
_PyErr StackItem *exc_info = tstate->exc_info;
Py XSETREF(exc_info->exc_value, exc_value);

This implementation is straightforward: it retrieves the current thread’s exception
stack and sets its exc_value to the processed exception. The Py XSETREF macro assigns
the new value and releases the old one. The net result is that the topmost exception is
removed from the stack, making way for the next possible exception handler (if any).

That’s about the entire flow for a try...except... block in Python. Not too
complex—right? :)

Finally!
Now, let’s add a finally block to the original example:

try:
1/ 0 # This line will cause an error
print("Hello World")
except Exception as e:
print(f"Something went wrong! {e}")
finally:
print("Finally Finish! Python is Awesome!")

In Python, the finally block always executes, regardless of whether an exception
occurred. Let’s see how the bytecode changes. To keep it concise, I'll just show the parts
that differ significantly:

2 4 LOAD_CONST 0 (1)
6 LOAD_CONST 1 (0)
8 BINARY OP 11 (/)
12 POP_TOP
3 14 PUSH_NULL
16 LOAD_NAME 0 (print)
18 LOAD_CONST 2 ('Hello World")
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20 CALL 1
28 POP_TOP

7 >> 30 PUSH_NULL

32 LOAD_NAME 0 (print)

34 LOAD_CONST 5 ('Finally Finish! Python is
Awesome! ")

36 CALL 1

44 POP_TOP

46 RETURN_CONST 4 (None)

>> 48 PUSH_EXC_INFO

The instructions are mostly the same, and the finally block appears in this
sequence as well. However, there is now a >> marker preceding bytecode 30. This
position is not referenced in the ExceptionTable, since the finally block always
executes and does not require a jump based on exceptions.

Continuing:
5 58 PUSH_NULL

60 LOAD NAME 0 (print)
62 LOAD_CONST 3 ('Something went wrong! ')
64 LOAD NAME 2 (e)
66 FORMAT_VALUE 0
68 BUILD STRING 2
70 CALL 1
78 POP_TOP
80 POP_EXCEPT
82 LOAD CONST 4 (None)
84 STORE_NAME 2 (e)
86 DELETE_NAME 2 (e)
88 JUMP_BACKWARD 30 (to 30)

>> 90 LOAD_CONST 4 (None)

The only new instruction here is JUMP_BACKWARD, which jumps back to a specific
bytecode position—in this case, to instruction 30, which is the start of the finally block.
This ensures that, regardless of whether an exception occurs, the finally block is always
executed.
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